Introduction to Mathematics for Life Scientists
Springer Berlin (Verlag)
978-3-540-09648-1 (ISBN)
. The reader will find it stimulating that each tool described is immediately exemplified by problems from latest publications." Int. Zeitschrift für klinische Pharmakologie, Therapie und Toxikologie
Der Band präsentiert eine biologisch motivierte Einführung in die mathematischen Methoden der Biologie. Er ist zum Selbststudium für Biologen und als Grundlage für Einführungsvorlesungen geeignet.
1. Real Numbers.- 1.1 Introduction.- 1.2 Classification and Measurement.- 1.3 A Problem with Percentages.- 1.4 Proper and Improper Use of Percentages.- 1.5 Algebraic Laws.- 1.6 Relative Numbers.- 1.7 Inequalities.- 1.8 Mean Values.- 1.9 Summation.- 1.10 Powers.- 1.11 Fractional Powers.- 1.12 Calculations with Approximate Numbers.- 1.13 An Application.- 1.14 Survey.- Problems for Solution.- 2. Sets and Symbolic Logic.- 2.1 "New Mathematics".- 2.2 Sets.- 2.3 Notations and Symbols.- 2.4 Variable Members.- 2.5 Complementary Set.- 2.6 The Union.- 2.7 The Intersection.- 2.8 Symbolic Logic.- 2.9 Negation and Implication.- 2.10 Boolean Algebra.- Problems for Solution.- 3. Relations and Functions.- 3.1 Introduction.- 3.2 Product Sets.- 3.3 Relations.- 3.4 Functions.- 3.5 A Special Linear Function.- 3.6 The General Linear Function.- 3.7 Linear Relations.- Problems for Solution.- 4. The Power Function and Related Functions.- 4.1 Definitions.- 4.2 Examples of Power Functions.- 4.3 Polynomials.- 4.4 Differences.- 4.5 An Application.- 4.6 Quadratic Equations.- Problems for Solution.- 5. Periodic Functions.- 5.1 Introduction and Definition.- 5.2 Angles.- 5.3 Polar Coordinates.- 5.4 Sine and Cosine.- 5.5 Conversion of Polar Coordinates.- 5.6 Right Triangles.- 5.7 Trigonometric Relations.- 5.8 Polar Graphs.- 5.9 Trigonometric Polynomials.- Problems for Solution.- 6. Exponential and Logarithmic Functions I.- 6.1 Sequences.- 6.2 The Exponential Function.- 6.3 Inverse Functions.- 6.4 The Logarithmic Functions.- 6.5 Applications.- 6.6 Scaling.- 6.7 Spirals.- Problems for Solution.- 7. Graphical Methods.- 7.1 Nonlinear Scales.- 7.2 Semilogarithmic Plot.- 7.3 Double-Logarithmic Plot.- 7.4 Triangular Charts.- 7.5 Nomography.- 7.6 Pictorial Views.- Problems for Solution.- 8. Limits.- 8.1Limits of Sequences.- 8.2 Some Special Limits.- 8.3 Series.- 8.4 Limits of Functions.- 8.5 The Fibonacci Sequence.- Problems for Solution.- 9. Differential and Integral Calculus.- 9.1 Growth Rates.- 9.2 Differentiation.- 9.3 The Antiderivative.- 9.4 Integrals.- 9.5 Integration.- 9.6 The Second Derivative.- 9.7 Extremes.- 9.8 Mean of a Continuous Function.- 9.9 Small Changes.- 9.10 Techniques of Integration.- Problems for Solution.- 10. Exponential and Logarithmic Functions II.- 10.1 Introduction.- 10.2 Integral of 1/x.- 10.3 Properties of ln x.- 10.4 The Inverse Function of ln x.- 10.5 The General Definition of a Power.- 10.6 Relationship between Natural and Common Logarithms.- 10.7 Differentiation and Integration.- 10.8 Some Limits.- 10.9 Applications.- 10.10 Approximations and Series Expansions.- 10.11 Hyperbolic Functions.- Problems for Solution.- 11. Ordinary Differential Equations.- 11.1 Introduction.- 11.2 Geometric Interpretation.- 11.3 The Differential Equation y' = ay.- 11.4 The Differential Equation y' = ay+b.- 11.5 The Differential Equation y' = ay2+ by+ c.- 11.6 The Differential Equation dy/dx = k · y/x.- 11.7 A System of Linear Differential Equations.- 11.8 A System of Nonlinear Differential Equations.- 11.9 Classification of Differential Equations.- Problems for Solution.- 12. Functions of Two or More Independent Variables.- 12.1 Introduction.- 12.2 Partial Derivatives.- 12.3 Maxima and Minima.- 12.4 Partial Differential Equations.- Problems for Solution.- 13. Probability.- 13.1 Introduction.- 13.2 Events.- 13.3 The Concept of Probability.- 13.4 The Axioms of Probability Theory.- 13.5 Conditional Probabilities.- 13.6 The Multiplication Rule.- 13.7 Counting.- 13.8 Binomial Distribution.- 13.9 Random Variables.- 13.10 The Poisson Distribution.- 13.11Continuous Distributions.- Problems for Solution.- 14. Matrices and Vectors.- 14.1 Notations.- 14.2 Matrix Algebra.- 14.3 Applications.- 14.4 Vectors in Space.- 14.5 Applications.- 14.6 Determinants.- 14.7 Inverse of a Matrix.- 14.8 Linear Dependence.- 14.9 Eigenvalues and Eigenvectors.- Problems for Solution.- 15. Complex Numbers.- 15.1 Introduction.- 15.2 The Complex Plane.- 15.3 Algebraic Operations.- 15.4 Exponential Functions of Complex Variables.- 15.5 Quadratic Equations.- 15.6 Oscillations.- Problems for Solution.- Appendix (Tables A to K).- Solutions to Odd Numbered Problems.- References.- Author and Subject Index.
Erscheint lt. Verlag | 1.10.1979 |
---|---|
Reihe/Serie | Springer Study Edition |
Zusatzinfo | XV, 646 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 996 g |
Themenwelt | Informatik ► Weitere Themen ► Bioinformatik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Biologie | |
Technik | |
Schlagworte | Algebra • Biomathematik • Life • Life Sciences • Mathematics • Modeling • partial differential equation |
ISBN-10 | 3-540-09648-5 / 3540096485 |
ISBN-13 | 978-3-540-09648-1 / 9783540096481 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich