Higher Gradient Materials and Related Generalized Continua (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XVI, 231 Seiten
Springer International Publishing (Verlag)
978-3-030-30406-5 (ISBN)

Lese- und Medienproben

Higher Gradient Materials and Related Generalized Continua -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book discusses recent findings and advanced theories presented at two workshops at TU Berlin in 2017 and 2018. It underlines several advantages of generalized continuum models compared to the classical Cauchy continuum, which although widely used in engineering practice, has a number of limitations, such as:

•     The structural size is very small.

•     The microstructure is complex.

•     The effects are localized.

As such, the development of generalized continuum models is helpful and results in a better description of the behavior of structures or materials. At the same time, there are more and more experimental studies supporting the new models because the number of material parameters is higher.




Prof. Dr.-Ing. habil. Dr. h.c.mult Holm Altenbach is a member of the International Association of Applied Mathematics and Mechanics, and the International Research Center on Mathematics and Mechanics of Complex Systems (M&MoCS), Italy. He has held positions at the Otto von Guericke University Magdeburg and at the Martin Luther University Halle-Wittenberg, both in Germany. He graduated from Leningrad Polytechnic Institute in 1985 (diploma in Dynamics and Strength of Machines). He defended his Ph.D. in 1983 and was awarded his Doctor of Technical Sciences in 1987, both at the same institute.

He is currently a Full Professor of Engineering Mechanics at the Otto von Guericke University Magdeburg, Faculty of Mechanical Engineering, Institute of Mechanics (since 2011), and has been acting as Director of the Institute of Mechanics since 2015.

His areas of scientific interest are general theory of elastic and inelastic plates and shells, creep and damage mechanics, strength theories, and nano- and micromechanics.

He is author/co-author/editor of 60 books (textbooks/monographs/proceedings), approximately 380 scientific papers (among them 250 peer-reviewed) and 500 scientific lectures. He is Managing Editor (2004 to 2014) and Editor-in-Chief (2005 - to date) of the Journal of Applied Mathematics and Mechanics (ZAMM) - the oldest journal in Mechanics in Germany (founded by Richard von Mises in 1921). He has been Advisory Editor of the journal 'Continuum Mechanics and Thermodynamics' since 2011, Associate Editor of the journal 'Mechanics of Composites' (Riga) since 2014, Doctor of Technical Sciences and Co-Editor of the Springer Series 'Advanced Structured Materials' since 2010.

He was awarded the 1992 Krupp Award (Alexander von Humboldt Foundation); 2000 Best Paper of the Year-Journal of Strain Analysis for Engineering Design; 2003 Gold Medal of the Faculty of Mechanical Engineering, Politechnika Lubelska, Lublin, Poland; 2004 Semko Medal of the National Technical University Kharkov, Ukraine; 2007 Doctor Honoris Causa, National Technical University Kharkov, Ukraine; 2011 Fellow of the Japanese Society for the Promotion of Science; 2014 Doctor Honoris Causa, University Constanta, Romania; 2016 Doctor Honoris Causa, Vekua Institute, Tbilisi, Georgia; 2018 Alexander von Humboldt Award (Poland). 

Bilen Emek Abali has studied and worked on various continents, and is currently a Postdoctoral Associate at the Technische Universitaet Berlin, in Germany. He has lectured on various topics, including mechanics, composite materials, numerical methods, and multiphysics simulations at different universities. Dr. Abali's research focuses on thermodynamical derivation of governing equations and their computation in engineering systems, especially in multiphysics applications. With distinguished scientists in several countries, he has been working on analytical solutions for verifying computations of heterogeneous materials in solids; developing and validating novel numerical solution strategies for multiphysics, including fluid structure interaction and coupled electromagneto-thermomechanical systems; investigating further theoretical methods in describing metamaterials with inner substructure; studying fatigue-related damage in metal alloys; applying mechanochemistry for a theoretical description of stresses in batteries; and also developing inverse analysis methods to characterize soft matter. For all computations, he utilizes and develops open-source packages and makes all codes publicly available in order to encourage scientific exchange.


Preface 6
Contents 8
List of Contributors 14
1 A Computational Approach for Determination of Parameters in Generalized Mechanics 18
1.1 Introduction 18
1.2 Homogenization Between Micro- and Macroscales 21
1.3 Determination of Parameters 23
1.4 Computation of One Specific Case 25
1.5 Algorithm for All Deformation Cases 26
1.6 Examples 27
1.7 Conclusion 30
References 31
2 Extensible Beam Models in Large Deformation Under Distributed Loading: a Numerical Study on Multiplicity of Solutions 36
2.1 Introduction 37
2.2 The Model 38
2.2.1 Kinematics and Deformation Energy 38
2.2.2 Lagrange Multipliers Method 39
2.3 Numerical Simulations 40
2.3.1 Numerical Methods 40
2.3.2 The Number of Equilibrium Configurations when the Load Increases 42
2.3.3 Equilibrium Configurations 43
2.3.4 Parametric Study on the Extensional Stiffness 46
2.4 Conclusions 49
Appendix 53
References 54
3 On the Characterization of the Nonlinear Reduced Micromorphic Continuum with the Local Material Symmetry Group 59
3.1 Introduction 59
3.2 Micromorphic Continua 60
3.3 Local Material Symmetry Group 62
3.4 Relaxed Micromorphic Medium as a Micromorphic Subfluid 63
3.5 Conclusions 68
References 68
4 Structural Modeling of Nonlinear Localized Strain Waves in Generalized Continua 71
4.1 Introduction 71
4.2 Principles of Structural Modeling 72
4.3 One-dimensional Model of a Nonlinear Gradient-elastic Continuum. 76
4.4 Nonlinear Strain Waves 78
4.5 Conclusions 82
References 83
5 A Diffusion Model for Stimulus Propagation in Remodeling Bone Tissues 85
5.1 Introduction 86
5.2 Accepted Assumptions and Main Variables 88
5.3 Poromechanical Formulation 91
5.4 Evolutionary Equations for Bone Remodeling 93
5.5 Stimulus ModelingWithout Time Delay and Diffusion Phenomena 95
5.6 An Improved Version of Stimulus Modeling 96
5.7 Numerical Simulations 98
5.8 Conclusions 103
References 105
6 A C1 Incompatible Mode Element Formulation for Strain Gradient Elasticity 111
6.1 Introduction 111
6.2 From Local Balance of Momentum to Minimization of the Elastic Potential 113
6.3 Ciarlets Elastic Energy 115
6.3.1 Strain Gradient Extension 115
6.3.2 Stress-strain Relations 116
6.3.3 Material parameters 117
6.4 Element Formulation 117
6.4.1 Overview 117
6.4.2 Incompatible Mode Element Formulation 118
6.4.3 Numerical Integration 121
6.4.4 Testing of the Implementation 122
6.5 Single Force Indentation Simulations 123
6.5.1 The Boundary Conditions 123
6.5.2 Meshing 124
6.5.3 Results 124
6.5.3.1 Transition Behavior as ? = 0. . .? 124
6.5.3.2 Singularity 124
6.5.4 A Comment on Pseudorigid Bodies 126
6.6 Sharp Corner Simulations 127
6.6.1 The Boundary Conditions 127
6.6.2 Meshing 128
6.6.3 Results 128
6.6.3.1 Transition Behavior as ??? 128
6.6.3.2 Convergence on Mesh Refinement 130
6.7 Improvement of the Element Formulation 132
6.8 Convergence Study 132
6.9 Conclusion 134
References 135
7 A Comparison of Boundary Element Method and Finite Element Method Dynamic Solutions for Poroelastic Column 137
7.1 Introduction 137
7.2 Mathematical Model 139
7.2.1 usi–p-formulation in Laplace Domain 140
7.2.2 usi–p-formulation in Time Domain 141
7.3 Boundary Integral Equation and Boundary Element Methodology 141
7.4 Laplace Transform Inversion 143
7.5 Numerical Example 143
7.6 Conclusion 146
Appendix 147
References 149
8 From Generalized Theories of Media with Fields of Defects to Closed Variational Models of the Coupled Gradient Thermoelasticity and Thermal Conductivity 151
8.1 Introduction 151
8.2 Kinematics of Gradient Continuous Media and Gradient Media with Fields of Defects 154
8.3 Variational Statement of Generalized Gradient Media with Fields of Defects 156
8.4 Mathematical Statement for Generalized Gradient Dilatation Model 158
8.5 Identification of Generalized Stress Factors of the Model 159
8.6 Particular Model: Gradient Thermoelasticity 163
8.7 Particular Model: Gradient Thermal Conductivity Model 164
8.8 Conclusion 167
References 168
9 Mathematical Modeling of Elastic Thin Bodies with one Small Size 171
9.1 Introduction 172
9.2 On Parametrization of a Thin Body Domain With one Small Size with an Arbitrary Base Surface 174
9.3 Presentations of the Equations of Motion, Heat Influx and Constitutive Relations of Micropolar Theory 184
9.3.1 Presentations of the Equations of Micropolar Theory 184
9.3.2 Representation of the Equation of Heat Influx in Micropolar Mechanics of a Deformable Thin Solids 185
9.3.3 Representations of Hooke’s Law and Fourier’s Heat Conduction Law 185
9.4 Some Recurrence Relations of the System of Legendre Polynomials on the Segment [?1, 1] 187
9.4.1 Main Recurrence Relations 187
9.4.2 Additional Recurrence Relations 188
9.5 Moments of Some Expressions Regarding the Legendre Polynomial System 188
9.5.1 Moments of Some Expressions Regarding the Legendre Polynomial System 189
9.6 Different Representations of the System of Motion Equations in Moments 192
9.6.1 Presentations of the System of Motion Equations in Moments with Respect to Systems of Legendre Polynomials 193
9.7 Representations of Constitutive Relations in Moments 197
9.8 On Boundary and Initial Conditions in Micropolar Mechanics of a Deformable Thin Body 199
9.8.1 The Boundary Conditions on the Front Surface 199
9.8.2 Boundary Conditions in Moments in the Theory of Thin Bodies 201
9.8.3 Kinematic Boundary Conditions in Moments 202
9.8.4 Physical Boundary Conditions in Moments 203
9.8.5 Boundary Conditions of Heat Content in Moments 205
9.8.5.1 Boundary Conditions of the First Kind in Moments 205
9.8.5.2 Boundary Conditions of the Second Kind in Moments 206
9.8.5.3 Boundary Conditions of the Third Kind in Moments 206
9.8.6 Initial Conditions in Moments 206
9.9 Problem Statements in Moments of Micropolar Thermomechanics of a Deformable Thin Body 207
9.9.1 Statement of the Coupled Dynamic Problem in Moments of (r,N) Approximation 207
9.9.2 Statement of a Non-stationary Temperature Problem in Moments of (r,N) Approximation 208
9.9.3 Statement of the Uncoupled Dynamic Problem in Moments of the (r,N) Approximation 209
References 210
10 Application of Eigenvalue Problems Under the Study of Wave Velocity in Some Media 216
10.1 Kinematic and Dynamic Conditions on the Strong Discontinuity Surface in Micropolar Mechanics 216
10.2 Equations for Determining the Wave Velocities in an Infinite Micropolar Solid 219
10.3 Classical Materials with Anisotropy Symbols {1,5} and {5,1} 223
10.4 Classical Material with an Anisotropy Symbol {1, 2, 3} (Cubic Symmetry) 228
10.5 Classical Material with an Anisotropy Symbol {1,1,2,2} (Transversal Isotropy) 229
10.6 Micropolar Material with a Center of Symmetry and the Anisotropy Symbol {1,5,3} 232
10.7 Conclusion 233
References 234
11 Theoretical Estimation of the Strength of Thin-film Coatings 236
11.1 Introduction 237
11.2 Theoretical Position 238
11.3 Basic Assumptions 241
11.4 Comparison of Calculation Results with Known Data 244
11.5 Conclusion 244
References 245

Erscheint lt. Verlag 4.11.2019
Reihe/Serie Advanced Structured Materials
Advanced Structured Materials
Zusatzinfo XVI, 231 p. 70 illus., 53 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte composite materials • dislocations • Generalized Continua • Gradient theories • Material Symmetry • wave propagation
ISBN-10 3-030-30406-X / 303030406X
ISBN-13 978-3-030-30406-5 / 9783030304065
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich