Discrete Energy on Rectifiable Sets (eBook)
XVIII, 666 Seiten
Springer New York (Verlag)
978-0-387-84808-2 (ISBN)
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications.
This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
Sergiy V. Borodachov is a Professor of Mathematics at Towson University, which he joined in 2008. Prof. Borodachov's primary research interests include approximation theory, numerical analysis, and minimal energy problems. He authored or co-authored more than 30 research articles and gave more than 90 talks at research conferences and seminars.
Douglas P. Hardin is a Professor of Mathematics and a Professor of Biomedical Informatics at Vanderbilt University. His research interests include discrete minimum energy problems, fractals, harmonic analysis (wavelets), inverse problems, and machine learning. Hardin has authored or co-authored over 115 research publications, 2 monographs, and co-edited 3 research journal special issues.
Edward B. Saff is a Professor of Mathematics at Vanderbilt University and Director of the Center for Constructive Approximation. His research areas include approximation theory, numerical analysis, and potential theory. Saff is a Fellow of the American Mathematics Society, a Foreign Member of the Bulgarian Academy of Science, and was a recipient of both a Guggenheim and a Fulbright Fellowships. He has authored or co-authored over 270 research articles, 4 research monographs and 4 textbooks, and is co-Editor-in-Chief and Managing Editor of the research journal Constructive Approximation. Prof. Saff also serves on the boards of 3 other research journals.
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linearprogramming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
Erscheint lt. Verlag | 31.10.2019 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | XVIII, 666 p. 62 illus., 53 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie | |
Schlagworte | computational methods • discrete energy • discretization • Energy Asymptotics • Equilibrium Distributions • Information and Communication, Circuits • Minimum Energy Approach • physical and biological applications • plum-pudding model • Riesz Kernels • Riesz s-energy • theoretical mathematics |
ISBN-10 | 0-387-84808-8 / 0387848088 |
ISBN-13 | 978-0-387-84808-2 / 9780387848082 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich