Für diesen Artikel ist leider kein Bild verfügbar.

Data Analysis for Complex Systems

A Linear Algebra Approach
Buch | Softcover
168 Seiten
2024
Princeton University Press (Verlag)
978-0-691-13918-0 (ISBN)
34,90 inkl. MwSt
The analysis of complex systems-from financial markets and voting patterns to ecosystems and food webs-can be daunting for newcomers to the subject, in part because existing methods often require expertise across multiple disciplines. This book shows how a single technique-the partition decoupling method-can serve as a useful first step for modeling and analyzing complex systems data. Accessible to a broad range of backgrounds and widely applicable to complex systems represented as high-dimensional or network data, this powerful methodology draws on core concepts in network modeling and analysis, cluster analysis, and a range of techniques for dimension reduction. The book explains these and other essential concepts and provides several real-world examples to illustrate how a data-driven approach can illuminate complex systems.



Provides a comprehensive introduction to modeling and analysis of complex systems with minimal mathematical prerequisites

Focuses on a single technique, thereby providing an easy entry point to the subject

Explains analytic techniques using actual data from the social sciences

Uses only linear algebra to model and analyze large data sets

Includes problems and real-world examples

An ideal textbook for students and invaluable resource for researchers with a wide range of backgrounds and preparation

Proven in the classroom

Greg Leibon is chief technology officer and cofounder of Coherent Path, a company specializing in predictive analytics. Scott D. Pauls is professor of mathematics at Dartmouth College. Dan Rockmore is the William H. Neukom 1964 Distinguished Professor of Computational Science at Dartmouth.

Erscheint lt. Verlag 19.3.2024
Reihe/Serie Primers in Complex Systems
Zusatzinfo 35 b/w illus.
Verlagsort New Jersey
Sprache englisch
Maße 140 x 216 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie
ISBN-10 0-691-13918-0 / 0691139180
ISBN-13 978-0-691-13918-0 / 9780691139180
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich