Lectures on Quantum Mechanics - Philip L. Bowers

Lectures on Quantum Mechanics

A Primer for Mathematicians
Buch | Hardcover
582 Seiten
2020
Cambridge University Press (Verlag)
978-1-108-42976-4 (ISBN)
89,75 inkl. MwSt
Quantum mechanics remains of great interest to mathematicians, having inspired and been inspired by much of modern mathematics: functional analysis, Lie groups and representations, Clifford algebras, and more. This book presents quantum mechanics in a leisurely but mathematically honest way, making it perfect for graduate students in mathematics.
Quantum mechanics is one of the principle pillars of modern physics. It also remains a topic of great interest to mathematicians. Since its discovery it has inspired and been inspired by many topics within modern mathematics, including functional analysis and operator algebras, Lie groups, Lie algebras and their representations, principle bundles, distribution theory, and much more. Written with beginning graduate students in mathematics in mind, this book provides a thorough treatment of (nonrelativistic) quantum mechanics in a style that is leisurely, without the usual theorem-proof grammar of pure mathematics, while remaining mathematically honest. The author takes the time to fully develop the required mathematics and employs a consistent mathematical presentation to clarify the often-confusing notation of physics texts. Along the way the reader encounters several topics requiring more advanced mathematics than found in many discussions of the subject, making for a fascinating course in how mathematics and physics interact.

Philip L Bowers is the Dwight B. Goodner Professor of Mathematics at Florida State University.

Preface; Prolegomenon; 1. The Harmonic Oscillator: Classical verses Quantum; 2. The Mathematical Structure of Quantum Mechanics; 3. Observables and Expectation Values; 4. The Projection Postulate Examined; 5. Rigged Hilbert Space and the Dirac Calculus; 6. A Review of Classical Mechanics; 7. Hamilton-Jacobi Theory *; 8. Classical Mechanics Regain'd; 9. Wave Mechanics I: Heisenberg Uncertainty; 10. Wave Mechanics II: The Fourier Transform; 11. Wave Mechanics III: The Quantum Oscillator; 12. Angular Momentum I: Basics; 13. Angular Momentum II: Representations of su(2); 14. Angular Momentum III: The Central Force Problem; 15. Wave Mechanics IV: The Hydrogenic Potential; 16. Wave Mechanics V: Hidden Symmetry Revealed; 17. Wave Mechanics VI: Hidden Symmetry Solved; 18. Angular Momentum IV: Addition Rules and Spin; 19. Wave Mechanics VII: Pauli's Spinor Theory; 20. Clifford Algebras and Spin Representations *; 21. Many-Particle Quantum Systems; 22. The EPR Argument and Bell's Inequalities; 23. Ensembles and Density Operators; 24. Bosons and Fermions; 25. The Fock Space for Indistinguishable Quanta; 26. An Introduction to Quantum Statistical Mechanics; 27. Quantum Dynamics; 28. Unitary Representations and Conservation Laws; 29. The Feynman Formulation of Quantum Mechanics; 30. A Mathematical Interlude: Gaussian Integrals; 31. Evaluating Path Integrals I; 32. Evaluating Path Integrals II; Epilogue; Resources for Individual Exploration; Bibliography; Index.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 155 x 234 mm
Gewicht 1020 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Quantenphysik
ISBN-10 1-108-42976-9 / 1108429769
ISBN-13 978-1-108-42976-4 / 9781108429764
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36