Phosphors for Radiation Detectors -

Phosphors for Radiation Detectors

Buch | Hardcover
416 Seiten
2022
John Wiley & Sons Inc (Verlag)
978-1-119-58332-5 (ISBN)
198,97 inkl. MwSt
Phosphors for Radiation Detector Phosphors for Radiation Detectors

Discover a comprehensive overview of luminescence phosphors for radiation detection

In Phosphors for Radiation Detection, accomplished researchers Takayuki Yanagida and Masanori Koshimizu deliver a state-of-the-art exploration of the use of phosphors in radiation detection. The internationally recognized contributors discuss the fundamental physics and detector functions associated with the technology with a focus on real-world applications.

The book discusses all forms of luminescence phosphors for radiation detection used in a variety of fields, including medicine, security, resource exploration, environmental monitoring, and high energy physics.

Readers will discover discussions of dosimeter materials, including thermally stimulated luminescent materials, optically stimulated luminescent materials, and radiophotoluminescence materials. The book also covers transparent ceramics and glasses and a broad range of devices used in this area.

Phosphors for Radiation Detection also includes:



Thorough introductions to ionizing radiation induced luminescence, organic scintillators, and inorganic oxide scintillators
Comprehensive explorations of luminescent materials, including discussions of materials synthesis and their use in gamma-ray, neutron, and charged particle detection
Practical discussions of semiconductor scintillators, including treatments of organic-inorganic layered perovskite materials for scintillation detectors
In-depth examinations of thermally stimulated luminescent materials, including discussions of the dosimetric properties for photons, charged particles, and neutrons

Relevant for research physicists, materials scientists, and electrical engineers, Phosphors for Radiation Detection is an also an indispensable resource for postgraduate and senior undergraduate students working in detection physics.

Edited by Takayuki Yanagida, PhD, is Professor at the Graduate School of Materials Science, Nara Institute of Science and Technology in Japan. He obtained his doctorate from the University of Tokyo. His research interests include inorganic crystal, transparent ceramic, and glass phosphors. Masanori Koshimizu is Associate Professor at the Graduate School of Engineering at Tohoku University. He has authored over 160 papers in the fields of Applied Chemistry and Quantum Physical Chemistry Series Editors Arthur Willoughby University of Southampton, Southampton, UK Peter Capper Ex-Leonardo MW Ltd, Southampton, UK Safa Kasap University of Saskatchewan, Saskatoon, Canada

List of Contributors xi

Preface xiii

Series Preface xv

1 Ionizing Radiation Induced Luminescence 1
Takayuki Yanagida

1.1 Introduction 1

1.2 Interactions of Ionizing Radiation with Matter 3

1.3 Scintillation 4

1.3.1 Energy Conversion Mechanism 4

1.3.2 Emission Mechanism 5

1.3.3 Scintillation Light Yield and Energy Resolution 8

1.3.4 Timing Properties 14

1.3.5 Radiation Hardness 17

1.3.6 Temperature Dependence 18

1.4 Ionizing Radiation Induced Storage Luminescence 18

1.4.1 General Description 18

1.4.2 Analytical Description of TSL 19

1.4.3 Analytical Description of OSL 24

1.5 Relationship of Scintillation and Storage Luminescence 26

1.6 Common Characterization Techniques of Ionizing Radiation Induced Luminescence Properties 29

References 35

2 Organic Scintillators 39
Masanori Koshimizu

2.1 Introduction 39

2.2 Basic Electronic Processes in Organic Scintillators 40

2.2.1 Electronic States and Excited States Dynamics of Organic Molecules 40

2.2.2 Excitation Energy Transfer 43

2.2.3 Scintillation Dynamics in Organic Scintillators at High Linear Energy Transfer 50

2.3 Liquid Scintillators 51

2.4 Organic Crystalline Scintillators 54

2.5 Plastic Scintillators 55

2.6 Organic–Inorganic Hybrid Scintillators 59

2.6.1 Loaded Organic Scintillators 59

2.6.2 Organic–Inorganic Nanocomposite Scintillators 60

References 61

3 Inorganic Oxide Scintillators 67
Daisuke Nakauchi, Noriaki Kawaguchi, and Takayuki Yanagida

3.1 Introduction 67

3.2 Crystal Growth 67

3.3 Outlines of Oxide Scintillators 70

3.4 Silicate Materials 73

3.4.1 Ce:Gd2SiO5 (Ce:GSO) 73

3.4.2 Ce:Lu2SiO5 (Ce:LSO) 74

3.4.3 Ce:Gd2Si2O7 (Ce:GPS) 76

3.4.4 LPS 77

3.5 Garnet Materials 77

3.5.1 Ce:Y3Al5O12 (Ce:YAG) 77

3.5.2 Ce:Lu3Al5O12 (Ce:LuAG), Pr:Lu3Al5O12 (Pr:LuAG) 79

3.5.3 Ce:Gd3Al2Ga3O12 (Ce:GAGG) 79

3.5.4 Ce:Tb3Al5O12 (Ce:TAG) 80

3.6 Perovskite Materials 82

3.6.1 Ce:YAlO3 (Ce:YAP) 82

3.6.2 Ce:LuAlO3 (Ce:LuAP) 82

3.7 Materials with Intrinsic Luminescence 83

3.7.1 CdWO4 83

3.7.2 Bi4Ge3O12 (BGO) 84

3.7.3 PbWO4 85

References 85

4 Inorganic Fluoride Scintillators 91
Noriaki Kawaguchi, Hiromi Kimura, Daisuke Nakauchi, Takumi Kato, and Takayuki Yanagida

4.1 Introduction 91

4.2 Crystal Growth of Fluorides 94

4.2.1 Classification of Methods for Crystal Growth 94

4.2.2 Furnace Materials, Atmosphere, and Scavengers for Fluoride Crystal Growth 95

4.2.3 Fluoride Crystal Growth Methods by Pulling Out from the Melt 96

4.2.4 Fluoride Crystal Growth Methods by Solidifying the Melt in the Crucible 98

4.2.5 Fluoride Crystal Growth Methods Without Using Crucibles 99

4.3 Outline of Fluoride Scintillators 100

4.4 Fluoride Scintillators for γ-Ray Detection 101

4.4.1 Fluoride Scintillators Based on Luminescence from 5d-4f Transitions of Ce3+ Ions 101

4.4.2 Fluoride Scintillators Based on Core-Valence Luminescence 102

4.4.3 VUV Emitting Fluoride Scintillators Doped with Nd3+, Er3+, and Tm3+ Ions 105

4.5 Fluoride Scintillators for Neutron Detection 106

4.5.1 Review for Neutron Scintillators 106

4.5.2 LiCaAlF6 Single Crystals 108

4.5.3 LiF/CaF2 Eutectic Composites 111

4.6 Fluoride Scintillators for Charged Particle Detection 113

4.6.1 Methods for Charged Particle Detection 113

4.6.2 CaF2 Based Scintillators for Charged Particle Detection 115

References 117

5 Inorganic Halide Scintillators 121
Yutaka Fujimoto

5.1 Introduction: History of Inorganic Halide Scintillator Research and Development 121

5.2 Characteristics of Halide Materials 122

5.2.1 Formation of Color Center and Self-Trapped Exciton 122

5.2.2 Hygroscopicity 123

5.3 Basic Techniques for Halide Scintillation Crystal Growth 125

5.4 Novel Ternary and Quaternary Halide Scintillators 127

5.4.1 Alkali Halide-Rare Earth Halide (AX–REX3) 127

5.4.2 Alkali Halide-Alkalin Earth Halide (AX–AEX2) 130

5.4.3 Elpasolite 134

5.5 Mixed-Anion Halide Scintillators 135

5.6 Next Generation of Halide Scintillators 137

5.6.1 Hf-and Tl-Based

Halide Scintillators 137

References 141

6 Semiconductor Scintillators 147
Naoki Kawano

6.1 Introduction 147

6.2 Photoluminescence and Scintillation Mechanisms in Semiconductors 149

6.3 Various Semiconductor Scintillators 154

6.3.1 Undoped Semiconductor Scintillator 155

6.3.2 Doped Semiconductor Scintillator 158

6.4 Quantum Size Effect 161

6.5 Organic–Inorganic Perovskite-Type Compounds 165

6.5.1 Introduction 165

6.5.2 Materials and Structures 166

6.5.3 Sample Preparation 167

6.5.4 Fundamental Optical Property 169

6.5.5 Scintillation 173

References 178

7 Thermally Stimulated Luminescent (TSL) Materials 181
Kiyomitsu Shinsho

7.1 Introduction 181

7.2 TSL Phenomenon 184

7.2.1 Basic Principles of TSL 184

7.2.2 Theory and Measurement of Glow Curves 185

7.3 TSL Materials: Fluoride, Oxides, Sulfates, and Borate 190

7.3.1 Fluorides 190

7.3.2 Oxides 198

7.3.3 Sulfates 202

7.3.4 Borates 204

7.4 TSL Dosimetric Properties for Photons, Charged Particles, and Neutrons 206

7.4.1 TSL Dosimetric Properties for Photons 206

7.4.2 TSL Dosimetric Properties for Charged Particles 211

7.4.3 TSL Dosimetric Properties for Neutrons 214

7.5 Two-Dimensional (2-D) TSL Dosimetry 214

7.5.1 Introduction 214

7.5.2 Types of 2-D TSLDs 215

7.5.3 Measurement Systems 216

7.5.4 Application of 2-D TSLDs in Photon Beam Radiotherapy 218

7.5.5 Outlook for 2-D TSLDs 220

References 220

8 Optically-Stimulated Luminescent Dosimeters 225
Hidehito Nanto and Go Okada

8.1 Introduction 225

8.2 Principles of OSL Phenomenon 226

8.3 OSL Materials and Dosimeters 235

8.4 Applications of OSL 239

8.5 Future Perspective 242

References 243

9 Radiophotoluminescence (RPL) 247
Go Okada, Takayuki Yanagida, Hidehito Nanto, and Safa Kasap

9.1 Introduction 247

9.2 RPL Phenomenon and the Definition 248

9.3 RPL Materials and Applications 249

9.3.1 Introduction 249

9.3.2 Ag-Doped Sodium-Aluminophosphate Glasses 252

9.3.3 Al2O3:C,Mg 260

9.3.4 LiF 264

9.3.5 Sm-Doped Compounds 268

9.3.6 Other RPL Materials 276

9.4 Conclusions 278

References 278

10 New Materials for Radiation Detectors: Transparent Ceramics 283
Takumi Kato, Noriaki Kawaguchi, and Takayuki Yanagida

10.1 Introduction of Transparent Ceramic Materials 283

10.1.1 Light Scattering Sources in Ceramics 283

10.1.2 History and Applications on Transparent Ceramics 285

10.2 Preparation Methodology 287

10.2.1 Sintering Mechanism of Ceramics 287

10.2.2 Effect of Residual Pores 290

10.2.3 Preparation Methods of Transparent Ceramics 291

10.3 Transparent Materials 292

10.4 Transparent Ceramic Scintillator 293

10.4.1 Sesquioxide (Such as Y2O3, Gd2O3, and Lu2O3) 293

10.4.2 Gd2O2S (GOS) 294

10.4.3 Garnet Materials (Such as YAG, LuAG, and GAGG) 294

10.4.4 Lu2SiO5 (LSO) 296

10.4.5 SrHfO3 296

10.4.6 La2Zr2O7 and La2Hf2O7 296

10.4.7 ZnO 296

10.4.8 BaF2 297

10.4.9 CeF3 298

10.4.10 CsBr 299

10.4.11 LaBr3 299

10.4.12 SrI2 300

10.5 Transparent Ceramics for Dosimeter 300

10.5.1 Al2O3 300

10.5.2 CaF2 302

10.5.3 MgO 302

10.5.4 MgF2 303

10.5.5 CsBr 304

10.5.6 Y3Al5-xGaxO12 (YAGG) 305

References 306

11 Luminescence in Glass-Based Materials by Ionizing Radiation 311
Hirokazu Masai and Kenji Shinozaki

11.1 Introduction 311

11.2 Structural and Physical Properties of Glass 312

11.3 Attenuation of Quantum Beam as Shielding Materials 320

11.4 Defect Formation in Oxide Glass by Quantum Beam Irradiation 320

11.5 Scintillation in Oxide Glass 323

11.5.1 Glass Scintillators for X-Ray and γ-Ray 323

11.5.2 Glass Scintillators for Neutrons 325

11.5.3 Storage Luminescence in Glass 328

11.6 Scintillation and Dosimetry in Non-oxide Glass 329

11.7 Preparation of Glass 335

11.7.1 Melt Process 335

11.7.2 Vapor Process and Fiber Drawing 337

11.7.3 Liquid Process 338

11.8 Future Prospectives for Glass-Based Materials 338

Acknowledgement 339

References 339

12 Detectors Using Radiation Induced Luminescence 347
Kenichi Watanabe

12.1 Introduction 347

12.2 General Issues to Manufacturing the Detector 349

12.3 Scintillation Detectors for Gamma-Rays and X-Rays 352

12.3.1 Gamma-Ray Spectrometer 352

12.3.2 Survey Meter and Area Monitor 356

12.3.3 Scintillation Detectors for Medical Applications 358

12.3.4 Scintillation Detectors for Other Applications 364

12.4 Scintillation Detectors for Charged Particles 366

12.5 Scintillation Detectors for Neutrons 368

12.5.1 Thermal Neutron Detectors 368

12.5.2 Fast Neutron Detectors 377

12.6 Personal Dosimeters 380

12.6.1 TL-Based Dosimetry System 380

12.6.2 OSL-Based Dosimetry System 381

12.6.3 RPL-Based Dosimetry System 382

12.7 OSL-Based Imaging System 383

References 384

Index 387

Erscheinungsdatum
Reihe/Serie Wiley Series in Materials for Electronic & Optoelectronic Applications
Verlagsort New York
Sprache englisch
Maße 170 x 244 mm
Gewicht 936 g
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-119-58332-2 / 1119583322
ISBN-13 978-1-119-58332-5 / 9781119583325
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
59,95
Thermodynamik | Kinetik | Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
59,95