Electrochemical Energy Storage (eBook)
VIII, 213 Seiten
Springer International Publishing (Verlag)
978-3-030-26130-6 (ISBN)
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Contents 6
Preface 7
Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries 9
Abstract 9
1 Introduction 10
2 Solvent Blends in Nonaqueous Electrolytes 12
2.1 Nitrile-Based and Ionic Liquid-Based Solvent Blends 13
2.1.1 Aim of Solvent Blending 13
2.2 Effect of Blending on Physicochemical Features 16
2.3 Effect of Blending on Electrochemical Performance 20
2.3.1 Cycling Performance and Electrochemical Stability 20
2.3.2 Aluminum Dissolution in Presence of Nitriles 23
2.4 Summary 26
3 Blended Conducting Salts in Nonaqueous Electrolytes 26
3.1 Aim of Blending Lithium Salts 31
3.2 Physicochemical Features of Blended Salt-Based Electrolytes 31
3.2.1 Transport Properties: Viscosity and Conductivity 31
3.2.2 Thermal Stability of Blended Salt-Based Electrolytes 34
3.3 Electrochemical Features of Blended Salt-Based Electrolytes 36
3.3.1 Cathodic Stability of Blended Salt-Based Electrolytes 36
3.3.2 Anodic Stability of the Blended Salt-Based Electrolytes 38
3.3.3 C-Rate Capability and Capacity Retention of the Blended Salt-Based Electrolytes 41
3.3.4 Suppression of Aluminum Dissolution by Blended Salt-Based Electrolytes 42
3.4 Summary 44
4 Blended Additive Containing Electrolytes 44
4.1 Safety Protection Agents 44
4.1.1 Flame Retardant Additive Blends 44
4.1.2 Overcharge Protection Additive Blends 48
4.2 SEI and CEI Film-Forming Additive Blends 51
4.3 Blended Electrolytes with Salt Stabilizer Additives 62
4.4 Summary 63
5 Concluding Remarks and Perspectives 63
References 66
High-Power-Density Organic Radical Batteries 73
Abstract 73
1 Introduction 74
2 Basic Concepts of Thin-Film Batteries 75
2.1 Battery Setup and Housing 77
2.2 Characteristics 78
3 Active Materials 80
3.1 TEMPO 81
3.2 Other Nitroxide Radicals 92
3.3 Other Radicals 98
4 Non-Active Materials 99
4.1 Conductive Additive and Binder 99
4.2 Electrolytes 100
5 Concluding Remarks 101
References 102
Cell Concepts of Metal--Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications 108
Abstract 108
1 Introduction 109
1.1 Sulfur as Active Material for Electrochemical Energy Storage: Motivation 109
2 Cell Concepts 115
2.1 Conventional Design with Additional Membrane 115
2.2 Polysulfide Cell Concept 117
2.3 All-Solid-State Cell Concept 119
2.4 High-Temperature Concept 122
3 Challenges of Metal-Negative Electrodes 125
4 Aspects of Magnesium--Sulfur and Potassium--Sulfur Cells 126
5 Conclusions 127
Acknowledgements 128
References 128
Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal--Air Batteries 133
Abstract 133
1 Introduction 134
2 Non-aqueous Non-alkali (NANA) Metal--Air Batteries Research Objectives 135
3 Nonaqueous Mg--Air Batteries 136
3.1 Introduction 136
3.2 Liquid-Based Cells 137
3.2.1 Organic-Based Electrolytes 137
3.2.1.1 Organic Solutions with Regular Mg Salts 138
3.2.1.2 Ether Solutions with Organo-Magnesium Compounds 140
3.2.1.3 Iodine-based electrolytes 142
3.2.2 Room-Temperature Ionic Liquids (RTILs)-Based Electrolytes 145
3.2.2.1 Grignard Reagents 146
3.2.2.2 Phosphonium Chloride Ionic Liquid 148
3.3 Polymer Electrolytes 148
3.4 All Solid-State Cells 149
4 Nonaqueous Al--Air Batteries 151
4.3 Introduction 151
4.2 Liquid-Based Cells 152
4.2.1 Alcohols 152
4.2.2 Ionic Liquid Electrolytes 152
4.2.2.1 Chloroaluminate Ionic Liquids 152
4.2.2.2 Alternative Ionic Liquids 153
4.3 All Solid-State Cell 155
5 Nonaqueous Silicon–Air Batteries 156
5.1 Introduction 156
5.2 Liquid-Based Cells 156
5.3 Gel Polymer-Based Electrolyte 159
5.4 All Solid-State Cells 161
6 An Overview: Conclusions and Perspective 163
6.1 General 163
6.2 Magnesium--Air Battery System 163
6.3 Aluminum--Air Battery System 164
6.4 Silicon--Air Battery System 164
6.5 All Solid-State Metal--Air Battery Systems 164
6.6 Full Cell Comparison 169
Acknowledgements 169
References 169
Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems 175
Abstract 175
1 Introduction 176
2 Results and Discussion 178
2.1 Basic Electrochemistry 178
2.2 Material Issues Related to Degradation 181
2.2.1 SEI Growth/Reorganization 182
2.2.2 Self Discharge 183
2.2.3 Exfoliation 184
2.2.4 Li-Dendrite Formation 187
2.2.5 Electrolyte Decomposition 189
2.2.6 Loss of Porosity 191
2.2.7 Transition-Metal Dissolution 192
2.2.8 Binder Decomposition 193
2.2.9 Cracks 195
2.2.10 Structural Changes 197
2.2.11 Changes in the Electronic Structure 201
2.2.12 Surface-Near Composition Changes 205
2.3 Capacity Loss in Full Cells 206
2.4 Degradation as a Safety Risk 211
3 Summary and Outlook 213
References 213
Erscheint lt. Verlag | 11.9.2019 |
---|---|
Reihe/Serie | Topics in Current Chemistry Collections | Topics in Current Chemistry Collections |
Zusatzinfo | VIII, 213 p. |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Schlagworte | High-Energy Electrode Materials • Hybrid Electrolytes • Ionic liquid electrolytes • Li-air battery • Li-Sulfur Battery • Metal-Ion Battery • Redox-Oxygen Batteries • solid-state batteries |
ISBN-10 | 3-030-26130-1 / 3030261301 |
ISBN-13 | 978-3-030-26130-6 / 9783030261306 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 12,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich