Predictive Data Mining Models - David L. Olson, Desheng Wu

Predictive Data Mining Models (eBook)

eBook Download: PDF
2019 | 2nd ed. 2020
XI, 125 Seiten
Springer Singapore (Verlag)
978-981-13-9664-9 (ISBN)
Systemvoraussetzungen
85,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R') and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems.  Data mining includes descriptive and predictive modeling.  Operations research includes all three. This book focuses on prescriptive analytics.

The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling.  Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting.  

Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.



David L. Olson is the James & H.K. Stuart Chancellor's Distinguished Chair and Full Professor at the University of Nebraska.  He has published research in over 150 refereed journal articles, primarily on the topic of multiple-objective decision-making, information technology, supply chain risk management, and data mining.  He teaches in the management information systems, management science, and operations management areas.  He has authored over 20 books and is a member of the Decision Sciences Institute, the Institute for Operations Research and Management Sciences, and the Multiple Criteria Decision Making Society.  He was a Lowry Mays endowed Professor at Texas A&M University from 1999 to 2001.  He was named the Raymond E. Miles Distinguished Scholar for 2002, and was a James C. and Rhonda Seacrest Fellow from 2005 to 2006.  He was named Best Enterprise Information Systems Educator by the IFIP in 2006 and is a Fellow of the Decision Sciences Institute.

Desheng Dash Wu is a distinguished professor at the University of Chinese Academy of Sciences. His research interests include enterprise risk management, performance evaluation, and decision support systems. His has published more than 80 journal papers in such journals as Production and Operations Management, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Risk Analysis, Decision Sciences, Decision Support Systems, European Journal of Operational Research, IEEE Transactions on Knowledge and Data Engineering, et al. He has coauthored 3 books with David L Olson, and has served as editor/guest editor for several journals such as IEEE Transactions on Systems, Man, and Cybernetics: Part B, Omega, Computers and OR, International Journal of Production Research.


This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R') and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems.  Data mining includes descriptive and predictive modeling.  Operations research includes all three. This book focuses on prescriptive analytics.The book seeks to provide simple explanations and demonstration of some descriptive tools. This second editionprovides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling.  Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting.  Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.

Preface 6
Contents 7
About the Authors 10
1 Knowledge Management 11
1.1 The Big Data Era 11
1.2 Business Intelligence 12
1.3 Knowledge Management 13
1.4 Computer Support Systems 13
1.5 Data Mining Forecasting Applications 15
1.6 Data Mining Tools 16
1.7 Summary 17
References 18
2 Data Sets 20
2.1 Gold 21
2.2 Other Datasets 23
2.2.1 Financial Index Data 23
2.2.2 Loan Analysis Data 26
2.2.3 Job Application Data 26
2.2.4 Insurance Fraud Data 27
2.2.5 Expenditure Data 27
2.3 Summary 28
References 29
3 Basic Forecasting Tools 30
3.1 Moving Average Models 30
3.2 Regression Models 31
3.3 Time Series Error Metrics 35
3.4 Seasonality 36
3.5 Demonstration Data 40
3.6 Software Demonstrations 44
3.6.1 R Software 45
3.6.2 Weka 48
3.7 Summary 51
4 Multiple Regression 54
4.1 Data Series 54
4.2 Correlation 56
4.3 Lags 59
4.4 Summary 64
5 Regression Tree Models 66
5.1 R Regression Trees 66
5.2 Random Forests 70
5.3 WEKA Regression Trees 76
5.3.1 Decision Stump 77
5.3.2 Random Tree Modeling 78
5.3.3 REP Tree Modeling 79
5.3.4 Random Forest 79
5.3.5 M5P Modeling 85
5.4 Summary 86
Reference 86
6 Autoregressive Models 87
6.1 ARIMA Models 87
6.2 ARIMA Model of Brent Crude 88
6.3 ARMA 90
6.4 GARCH Models 95
6.4.1 ARCH(q) 95
6.4.2 GARCH(p, q) 95
6.4.3 EGARCH 96
6.4.4 GJR(p, q) 96
6.5 Regime Switching Models 97
6.6 Application on Crude Oil Data 97
6.7 Summary 100
References 101
7 Classification Tools 102
7.1 Bankruptcy Data Set 102
7.2 Logistic Regression 104
7.3 Support Vector Machines 109
7.4 Neural Networks 113
7.5 Decision Trees 114
7.6 Random Forests 117
7.7 Boosting 119
7.8 Comparison 120
7.9 WEKA Classification Modeling 123
7.10 Summary 127
Reference 128
8 Predictive Models and Big Data 129
References 131

Erscheint lt. Verlag 7.8.2019
Reihe/Serie Computational Risk Management
Computational Risk Management
Zusatzinfo XI, 125 p. 77 illus., 69 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Naturwissenschaften
Wirtschaft Betriebswirtschaft / Management Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte decision trees • Forecasting • Logistic Regression • Neural networks • Prescriptive data mining
ISBN-10 981-13-9664-7 / 9811396647
ISBN-13 978-981-13-9664-9 / 9789811396649
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99