Für diesen Artikel ist leider kein Bild verfügbar.

Multiphysics Modelling of Fluid-Particulate Systems

Buch | Softcover
438 Seiten
2020
Academic Press Inc (Verlag)
978-0-12-818345-8 (ISBN)
175,80 inkl. MwSt
Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem.

This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing.

Dr. Hassan Abbas Khawaja is an Associate Professor at UiT The Arctic University of Norway, leading the IR, Spectroscopy, and Numerical Modelling Research Group within the Process and Gas team. He holds a Doctorate in Engineering from the University of Cambridge and an Executive MBA from Quantic School of Business. Khawaja is a Chartered Engineer, Vice President of the International Society of Multiphysics, and Director of the Global Listening Centre. He has received prestigious awards and led research projects funded by entities like the Research Council of Norway. Khawaja's teaching emphasizes practical applications and critical thinking, introducing courses in Multiphysics Simulation. His work is published in peer-reviewed journals, and he is actively involved in peer review and conference organization. Engaged in outreach activities, Khawaja promotes the relevance of multiphysics in engineering and science through various initiatives. Professor Moatamedi is President of The International Society of Multiphysics, as well as an Executive Director for New York University London. Prior to this, he was a President for Al Ghurair University, and has held senior managerial positions at Imperial College London, Narvik University College, Cranfield University, The University of Salford and The University of Sheffield. He is Editor-in-Chief of ‘The International Journal of Multiphysics’ and Chairman for the associated conferences. He is a Fellow of the Institution of Mechanical Engineering, a Fellow of the Royal Aeronautical Society (RAeS), a Fellow of The Nuclear Institute (NI) and a Member of the American Society of Mechanical Engineers (ASME), and a Charted Engineer. He served as the Chairman of the Manchester Branch of the Royal Aeronautical Society and he has been a member of several national and international scientific committees, and advisor to some industrial and governmental bodies including the Office for Nuclear Regulations (ONR), in addition to being the lead person to devise the Multiphysics competence standards for the European Union. He is currently a member of the Council and the Board of Directors of NAFEMS.

Part 1 Computational Fluid Dynamics: Discrete Element Modeling of Fluidized Beds 1. Introduction: discrete element modeling-computational fluid dynamics of fluidized beds 2. Methodology: CFD-DEM of Fluidized Beds 3. Validation case study: bubbling in the fluidized bed 4. Validation Case Study: Sound Waves in Fluidized Medium

Part 2 Large, (non)spherical particle modeling in the context of fluid filtration applications (resolved Eulerian-Lagrangian) 5. Introduction: large, (non-)spherical particle modeling in the context of fluid filtration applications 6. Methodology: large (non)spherical particle modeling in the context of fluid filtration applications 7. Validation: experimental and semianalytical 8. Application and results: filter fiber engineering 9. Conclusion and vision

Part 3 Lagrangian-Lagrangian: Modeling Shocks through Inhomogeneous Media with Smoothed Particle Hydrodynamics 10. Introduction: smoothed particle hydrodynamics modeling of shocks 11. Methodology: smoothed particle hydrodynamics modeling of shocks 12. Validation: smoothed particle hydrodynamics modeling of shocks 13. Conclusion: smoothed particle hydrodynamics modeling of shocks

Erscheinungsdatum
Reihe/Serie Multiphysics: Advances and Applications
Verlagsort San Diego
Sprache englisch
Maße 152 x 229 mm
Gewicht 590 g
Themenwelt Naturwissenschaften Physik / Astronomie Strömungsmechanik
ISBN-10 0-12-818345-4 / 0128183454
ISBN-13 978-0-12-818345-8 / 9780128183458
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Herbert Sigloch

Buch | Hardcover (2023)
Hanser (Verlag)
44,99

von Heinz Schade; Ewald Kunz; Frank Kameier …

Buch | Softcover (2022)
De Gruyter (Verlag)
74,95