Organic Chemistry (eBook)
Wiley-VCH Verlag GmbH & Co. KGaA
978-3-527-81925-6 (ISBN)
Knowledge of physical chemistry is essential for achieving successful chemical reactions in organic chemistry. Chemists must be competent in a range of areas to understand organic synthesis. Organic Chemistry provides the methods, models, and tools necessary to fully comprehend organic reactions. Written by two internationally recognized experts in the field, this much-needed textbook fills a gap in current literature on physical organic chemistry.
Rigorous yet straightforward chapters first examine chemical equilibria, thermodynamics, reaction rates and mechanisms, and molecular orbital theory, providing readers with a strong foundation in physical organic chemistry. Subsequent chapters demonstrate various reactions involving organic, organometallic, and biochemical reactants and catalysts. Throughout the text, numerous questions and exercises, over 800 in total, help readers strengthen their comprehension of the subject and highlight key points of learning. The companion Organic Chemistry Workbook contains complete references and answers to every question in this text. A much-needed resource for students and working chemists alike, this text:
-Presents models that establish if a reaction is possible, estimate how long it will take, and determine its properties
-Describes reactions with broad practical value in synthesis and biology, such as C-C-coupling reactions, pericyclic reactions, and catalytic reactions
-Enables readers to plan chemical reactions more efficiently
-Features clear illustrations, figures, and tables
-With a Foreword by Nobel Prize Laureate Robert H. Grubbs
Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis is an ideal textbook for students and instructors of chemistry, and a valuable work of reference for organic chemists, physical chemists, and chemical engineers.
Professor Kendall Houk is Saul Winstein Professor at the UCLA. He is an authority on theoretical and computational organic chemistry. His group develops rules to understand reactivity, computationally models complex organic reactions, and experimentally tests the predictions of theory. He collaborates prodigiously with chemists all over the world. He has published nearly 1100 articles in refereed journals and is among the 100 most-cited chemists.
Professor Pierre Vogel is Professor of organic chemistry at the EPFL in Lausanne, Switzerland. He has published three books and has co-authored more than 490 publications in the fields of physical organic chemistry, organic and organometallic synthesis, total asymmetric synthesis of natural products of biological interest, catalysis, glycochemistry and bio-organic chemistry.
Kendall Houk is Saul Winstein Professor at the University of California Los Angeles (UCLA). He is an authority on theoretical and computational organic chemistry. Professor Houk has published nearly 1100 articles in refereed journals and is among the 100 most-cited chemists. Pierre Vogel is Professor of Organic Chemistry at the EPFL (Swiss Institute of Technology) in Lausanne, Switzerland. He has published three books and has co-authored more than 490 publications in fields such as physical organic chemistry, organic and organometallic synthesis, and catalysis.
Cover 1
Title Page 5
Copyright 6
Contents 7
Preface 17
Foreword 31
Chapter 1 Equilibria and thermochemistry 33
1.1 Introduction 33
1.2 Equilibrium?free enthalpy: reaction?free energy or Gibbs energy 33
1.3 Heat of reaction and variation of the entropy of reaction (reaction entropy) 34
1.4 Statistical thermodynamics 36
1.4.1 Contributions from translation energy levels 37
1.4.2 Contributions from rotational energy levels 37
1.4.3 Contributions from vibrational energy levels 38
1.4.4 Entropy of reaction depends above all on the change of the number of molecules between products and reactants 39
1.4.5 Additions are favored thermodynamically on cooling, fragmentations on heating 39
1.5 Standard heats of formation 40
1.6 What do standard heats of formation tell us about chemical bonding and ground?state properties of organic compounds? 41
1.6.1 Effect of electronegativity on bond strength 42
1.6.2 Effects of electronegativity and of hyperconjugation 43
1.6.3 ??Conjugation and hyperconjugation in carboxylic functions 44
1.6.4 Degree of chain branching and Markovnikov's rule 45
1.7 Standard heats of typical organic reactions 46
1.7.1 Standard heats of hydrogenation and hydrocarbation 46
1.7.2 Standard heats of C–H oxidations 47
1.7.3 Relative stabilities of alkyl?substituted ethylenes 49
1.7.4 Effect of fluoro substituents on hydrocarbon stabilities 49
1.7.5 Storage of hydrogen in the form of formic acid 50
1.8 Ionization energies and electron affinities 52
1.9 Homolytic bond dissociations heats of formation of radicals
1.9.1 Measurement of bond dissociation energies 54
1.9.2 Substituent effects on the relative stabilities of radicals 57
1.9.3 ??Conjugation in benzyl, allyl, and propargyl radicals 57
1.10 Heterolytic bond dissociation enthalpies 60
1.10.1 Measurement of gas?phase heterolytic bond dissociation enthalpies 60
1.10.2 Thermochemistry of ions in the gas phase 61
1.10.3 Gas?phase acidities 62
1.11 Electron transfer equilibria 64
1.12 Heats of formation of neutral, transient compounds 64
1.12.1 Measurements of the heats of formation of carbenes 64
1.12.2 Measurements of the heats of formation of diradicals 65
1.12.3 Keto/enol tautomerism 65
1.12.4 Heat of formation of highly reactive cyclobutadiene 68
1.12.5 Estimate of heats of formation of diradicals 68
1.13 Electronegativity and absolute hardness 69
1.14 Chemical conversion and selectivity controlled by thermodynamics 72
1.14.1 Equilibrium shifts (Le Chatelier's principle in action) 72
1.14.2 Importance of chirality in biology and medicine 73
1.14.3 Resolution of racemates into enantiomers 75
1.14.4 Thermodynamically controlled deracemization 78
1.14.5 Self?disproportionation of enantiomers 80
1.15 Thermodynamic (equilibrium) isotopic effects 81
1.A Appendix, Table 1.A.1 to Table 1.A.24 85
References 124
Chapter 2 Additivity rules for thermodynamic parameters and deviations 141
2.1 Introduction 141
2.2 Molecular groups 142
2.3 Determination of the standard group equivalents (group equivalents) 143
2.4 Determination of standard entropy increments 145
2.5 Steric effects 146
2.5.1 Gauche interactions: the preferred conformations of alkyl chains 146
2.5.2 (E)? vs. (Z)?alkenes and ortho?substitution in benzene derivatives 149
2.6 Ring strain and conformational flexibility of cyclic compounds 149
2.6.1 Cyclopropane and cyclobutane have nearly the same strain energy 150
2.6.2 Cyclopentane is a flexible cycloalkane 151
2.6.3 Conformational analysis of cyclohexane 151
2.6.4 Conformational analysis of cyclohexanones 153
2.6.5 Conformational analysis of cyclohexene 154
2.6.6 Medium?sized cycloalkanes 154
2.6.7 Conformations and ring strain in polycycloalkanes 156
2.6.8 Ring strain in cycloalkenes 157
2.6.9 Bredt's rule and “anti?Bredt” alkenes 157
2.6.10 Allylic 1,3? and 1,2?strain: the model of banana bonds 158
2.7 ?/??, n/??, ?/??, and n/??interactions 159
2.7.1 Conjugated dienes and diynes 159
2.7.2 Atropisomerism in 1,3?dienes and diaryl compounds 161
2.7.3 ?,??Unsaturated carbonyl compounds 162
2.7.4 Stabilization by aromaticity 162
2.7.5 Stabilization by n(Z:)/? conjugation 164
2.7.6 ?/??Conjugation and ?/??hyperconjugation in esters, thioesters, and amides 165
2.7.7 Oximes are more stable than imines toward hydrolysis 168
2.7.8 Aromatic stabilization energies of heterocyclic compounds 168
2.7.9 Geminal disubstitution: enthalpic anomeric effects 171
2.7.10 Conformational anomeric effect 173
2.8 Other deviations to additivity rules 176
2.9 Major role of translational entropy on equilibria 178
2.9.1 Aldol and crotonalization reactions 178
2.9.2 Aging of wines 180
2.10 Entropy of cyclization: loss of degrees of free rotation 183
2.11 Entropy as a synthetic tool 183
2.11.1 Pyrolysis of esters 183
2.11.2 Method of Chugaev 184
2.11.3 Eschenmoser–Tanabe fragmentation 184
2.11.4 Eschenmoser fragmentation 185
2.11.5 Thermal 1,4?eliminations 185
2.11.6 Retro?Diels–Alder reactions 188
2.A Appendix, Table 2.A.1 to Table 2.A.2 189
References 193
Chapter 3 Rates of chemical reactions 209
3.1 Introduction 209
3.2 Differential and integrated rate laws 209
3.2.1 Order of reactions 210
3.2.2 Molecularity and reaction mechanisms 211
3.2.3 Examples of zero order reactions 213
3.2.4 Reversible reactions 214
3.2.5 Parallel reactions 215
3.2.6 Consecutive reactions and steady?state approximation 215
3.2.7 Consecutive reactions: maximum yield of the intermediate product 216
3.2.8 Homogeneous catalysis: Michaelis–Menten kinetics 217
3.2.9 Competitive vs. noncompetitive inhibition 218
3.2.10 Heterogeneous catalysis: reactions at surfaces 219
3.3 Activation parameters 220
3.3.1 Temperature effect on the selectivity of two parallel reactions 222
3.3.2 The Curtin–Hammett principle 222
3.4 Relationship between activation entropy and the reaction mechanism 224
3.4.1 Homolysis and radical combination in the gas phase 224
3.4.2 Isomerizations in the gas phase 225
3.4.3 Example of homolysis assisted by bond formation: the Cope rearrangement 227
3.4.4 Example of homolysis assisted by bond?breaking and bond?forming processes: retro–carbonyl–ene reaction 227
3.4.5 Can a reaction be assisted by neighboring groups? 229
3.5 Competition between cyclization and intermolecular condensation 229
3.5.1 Thorpe–Ingold effect 230
3.6 Effect of pressure: activation volume 233
3.6.1 Relationship between activation volume and the mechanism of reaction 233
3.6.2 Detection of change of mechanism 234
3.6.3 Synthetic applications of high pressure 235
3.6.4 Rate enhancement by compression of reactants along the reaction coordinates 236
3.6.5 Structural effects on the rate of the Bergman rearrangement 237
3.7 Asymmetric organic synthesis 238
3.7.1 Kinetic resolution 238
3.7.2 Parallel kinetic resolution 243
3.7.3 Dynamic kinetic resolution: kinetic deracemization 244
3.7.4 Synthesis starting from enantiomerically pure natural compounds 247
3.7.5 Use of recoverable chiral auxiliaries 249
3.7.6 Catalytic desymmetrization of achiral compounds 252
3.7.7 Nonlinear effects in asymmetric synthesis 258
3.7.8 Asymmetric autocatalysis 260
3.8 Chemo? and site?selective reactions 261
3.9 Kinetic isotope effects and reaction mechanisms 263
3.9.1 Primary kinetic isotope effects: the case of hydrogen transfers 263
3.9.2 Tunneling effects 264
3.9.3 Nucleophilic substitution and elimination reactions 266
3.9.4 Steric effect on kinetic isotope effects 271
3.9.5 Simultaneous determination of multiple small kinetic isotope effects at natural abundance 271
References 272
Chapter 4 Molecular orbital theories 303
4.1 Introduction 303
4.2 Background of quantum chemistry 303
4.3 Schrödinger equation 304
4.4 Coulson and Longuet?Higgins approach 306
4.4.1 Hydrogen molecule 307
4.4.2 Hydrogenoid molecules: The PMO theory 308
4.5 Hückel method 309
4.5.1 ??Molecular orbitals of ethylene 310
4.5.2 Allyl cation, radical, and anion 311
4.5.3 Shape of allyl ??molecular orbitals 314
4.5.4 Cyclopropenyl systems 314
4.5.5 Butadiene 317
4.5.6 Cyclobutadiene and its electronic destabilization (antiaromaticity) 318
4.5.7 Geometries of cyclobutadienes, singlet and triplet states 320
4.5.8 Pentadienyl and cyclopentadienyl systems 323
4.5.9 Cyclopentadienyl anion and bishomocyclopentadienyl anions 324
4.5.10 Benzene and its aromatic stabilization energy 326
4.5.11 3,4?Dimethylidenecyclobutene is not stabilized by ??conjugation 327
4.5.12 Fulvene 329
4.5.13 [N]Annulenes 330
4.5.14 Cyclooctatetraene 333
4.5.15 ??Systems with heteroatoms 334
4.6 Aromatic stabilization energy of heterocyclic compounds 337
4.7 Homoconjugation 340
4.7.1 Homoaromaticity in cyclobutenyl cation 340
4.7.2 Homoaromaticity in homotropylium cation 340
4.7.3 Homoaromaticity in cycloheptatriene 342
4.7.4 Bishomoaromaticity in bishomotropylium ions 343
4.7.5 Bishomoaromaticity in neutral semibullvalene derivatives 344
4.7.6 Barrelene effect 345
4.8 Hyperconjugation 346
4.8.1 Neutral, positive, and negative hyperconjugation 346
4.8.2 Hyperconjugation in cyclopentadienes 347
4.8.3 Nonplanarity of bicyclo[2.2.1]hept?2?ene double bond 347
4.8.4 Conformation of unsaturated and saturated systems 349
4.8.5 Hyperconjugation in radicals 351
4.8.6 Hyperconjugation in carbenium ions 352
4.8.7 Hyperconjugation in carbanions 352
4.8.8 Cyclopropyl vs. cyclobutyl substituent effect 354
4.9 Heilbronner möbius aromatic [N]annulenes 356
4.10 Conclusion 358
References 358
Chapter 5 Pericyclic reactions 371
5.1 Introduction 371
5.2 Electrocyclic reactions 372
5.2.1 Stereochemistry of thermal cyclobutene?butadiene isomerization: four?electron electrocyclic reactions 372
5.2.2 Longuet?Higgins correlation of electronic configurations 374
5.2.3 Woodward–Hoffmann simplification 377
5.2.4 Aromaticity of transition states in cyclobutene/butadiene electrocyclizations 378
5.2.5 Torquoselectivity of cyclobutene electrocyclic reactions 379
5.2.6 Nazarov cyclizations 382
5.2.7 Thermal openings of three?membered ring systems 386
5.2.8 Six?electron electrocyclic reactions 389
5.2.9 Eight?electron electrocyclic reactions 392
5.3 Cycloadditions and cycloreversions 393
5.3.1 Stereoselectivity of thermal [?2+?2]?cycloadditions: Longuet?Higgins model 394
5.3.2 Woodward–Hoffmann rules for cycloadditions 396
5.3.3 Aromaticity of cycloaddition transition structures 398
5.3.4 Mechanism of thermal [?2+?2]?cycloadditions and [?2+?2]?cycloreversions: 1,4?diradical/zwitterion intermediates or diradicaloid transition structures 400
5.3.5 Cycloadditions of allenes 404
5.3.6 Cycloadditions of ketenes and keteniminium salts 405
5.3.7 Wittig olefination 412
5.3.8 Olefinations analogous to the Wittig reaction 416
5.3.9 Diels–Alder reaction: concerted and non?concerted mechanisms compete 419
5.3.10 Concerted Diels–Alder reactions with synchronous or asynchronous transition states 423
5.3.11 Diradicaloid model for transition states of concerted Diels–Alder reactions 424
5.3.12 Structural effects on the Diels–Alder reactivity 429
5.3.13 Regioselectivity of Diels–Alder reactions 431
5.3.14 Stereoselectivity of Diels–Alder reactions: the Alder “endo rule” 438
5.3.15 ??Facial selectivity of Diels–Alder reactions 440
5.3.16 Examples of hetero?Diels–Alder reactions 443
5.3.17 1,3?Dipolar cycloadditions 452
5.3.18 Sharpless asymmetric dihydroxylation of alkenes 460
5.3.19 Thermal (2+2+2)?cycloadditions 460
5.3.20 Noncatalyzed (4+3)? and (5+2)?cycloadditions 463
5.3.21 Thermal higher order (m+n)?cycloadditions 466
5.4 Cheletropic reactions 469
5.4.1 Cyclopropanation by (2+1)?cheletropic reaction of carbenes 469
5.4.2 Aziridination by (2+1)?cheletropic addition of nitrenes 472
5.4.3 Decarbonylation of cyclic ketones by cheletropic elimination 474
5.4.4 Cheletropic reactions of sulfur dioxide 476
5.4.5 Cheletropic reactions of heavier congeners of carbenes and nitrenes 479
5.5 Thermal sigmatropic rearrangements 483
5.5.1 (1,2)?Sigmatropic rearrangement of carbenium ions 483
5.5.2 (1,2)?Sigmatropic rearrangements of radicals 488
5.5.3 (1,2)?Sigmatropic rearrangements of organoalkali compounds 491
5.5.4 (1,3)?Sigmatropic rearrangements 494
5.5.5 (1,4)?Sigmatropic rearrangements 497
5.5.6 (1,5)?Sigmatropic rearrangements 499
5.5.7 (1,7)?Sigmatropic rearrangements 501
5.5.8 (2,3)?Sigmatropic rearrangements 502
5.5.9 (3,3)?Sigmatropic rearrangements 508
5.5.9.1 Fischer indole synthesis (3,4?diaza?Cope rearrangement) 508
5.5.9.2 Claisen rearrangement and its variants (3?oxa?Cope rearrangements) 508
5.5.9.3 Aza?Claisen rearrangements (3?aza?Cope rearrangements) 513
5.5.9.4 Overman rearrangement (1?oxa?3?aza?Cope rearrangement) 515
5.5.9.5 Thia?Claisen rearrangement (3?thia?Cope rearrangement) 516
5.5.9.6 Cope rearrangements 516
5.5.9.7 Facile anionic oxy?Cope rearrangements 521
5.5.9.8 Acetylenic Cope rearrangements 523
5.5.9.9 Other hetero?Cope rearrangements 524
5.6 Dyotropic rearrangements and transfers 527
5.6.1 Type I dyotropic rearrangements 528
5.6.2 Alkene and alkyne reductions with diimide 530
5.6.3 Type II dyotropic rearrangements 531
5.7 Ene?reactions and related reactions 532
5.7.1 Thermal Alder ene?reactions 533
5.7.2 Carbonyl ene?reactions 536
5.7.3 Other hetero?ene reactions involving hydrogen transfers 536
5.7.4 Metallo?ene?reactions 540
5.7.5 Carbonyl allylation with allylmetals: carbonyl metallo?ene?reactions 541
5.7.6 Aldol reaction 546
5.7.7 Reactions of metal enolates with carbonyl compounds 550
References 558
Chapter 6 Organic photochemistry 647
6.1 Introduction 647
6.2 Photophysical processes of organic compounds 647
6.2.1 UV–visible spectroscopy: electronic transitions 648
6.2.2 Fluorescence and phosphorescence: singlet and triplet excited states 652
6.2.3 Bimolecular photophysical processes 655
6.3 Unimolecular photochemical reactions of unsaturated hydrocarbons 658
6.3.1 Photoinduced (E)/(Z)?isomerization of alkenes 658
6.3.2 Photochemistry of cyclopropenes, allenes, and alkynes 662
6.3.3 Electrocyclic ring closures of conjugated dienes and ring opening of cyclobutenes 663
6.3.4 The di???methane (Zimmerman) rearrangement of 1,4?dienes 665
6.3.5 Electrocyclic interconversions of cyclohexa?1,3?dienes and hexa?1,3,5?trienes 667
6.4 Unimolecular photochemical reactions of carbonyl compounds 669
6.4.1 Norrish type I reaction (??cleavage) 669
6.4.2 Norrish type II reaction and other intramolecular hydrogen transfers 671
6.4.3 Unimolecular photochemistry of enones and dienones 674
6.5 Unimolecular photoreactions of benzene and heteroaromatic analogs 676
6.5.1 Photoisomerization of benzene 676
6.5.2 Photoisomerizations of pyridines, pyridinium salts, and diazines 678
6.5.3 Photolysis of five?membered ring heteroaromatic compounds 679
6.6 Photocleavage of carbon–heteroatom bonds 681
6.6.1 Photo?Fries, photo?Claisen, and related rearrangements 681
6.6.2 Photolysis of 1,2?diazenes, 3H?diazirines, and diazo compounds 683
6.6.3 Photolysis of alkyl halides 686
6.6.4 Solution photochemistry of aryl and alkenyl halides 689
6.6.5 Photolysis of phenyliodonium salts: formation of aryl and alkenyl cation intermediates 691
6.6.6 Photolytic decomposition of arenediazonium salts in solution 692
6.7 Photocleavage of nitrogen?nitrogen bonds 693
6.7.1 Photolysis of azides 694
6.7.2 Photo?Curtius rearrangement 696
6.7.3 Photolysis of geminal diazides 697
6.7.4 Photolysis of 1,2,3?triazoles and of tetrazoles 698
6.8 Photochemical cycloadditions of unsaturated compounds 699
6.8.1 Photochemical intramolecular (2+2)?cycloadditions of alkenes 700
6.8.2 Photochemical intermolecular (2+2)?cycloadditions of alkenes 704
6.8.3 Photochemical intermolecular (4+2)?cycloadditions of dienes and alkenes 708
6.8.4 Photochemical cycloadditions of benzene and derivatives to alkenes 709
6.8.5 Photochemical cycloadditions of carbonyl compounds 713
6.8.6 Photochemical cycloadditions of imines and related C?N double?bonded compounds 718
6.9 Photo?oxygenation 720
6.9.1 Reactions of ground?state molecular oxygen with hydrocarbons 720
6.9.2 Singlet molecular oxygen 723
6.9.3 Diels–Alder reactions of singlet oxygen 727
6.9.4 Dioxa?ene reactions of singlet oxygen 732
6.9.5 (2+2)?Cycloadditions of singlet oxygen 736
6.9.6 1,3?Dipolar cycloadditions of singlet oxygen 737
6.9.7 Nonpericyclic reactions of singlet oxygen 739
6.10 Photoinduced electron transfers 742
6.10.1 Marcus model 743
6.10.2 Catalysis through photoreduction 743
6.10.3 Photoinduced net reductions 747
6.10.4 Catalysis through photo?oxidation 749
6.10.5 Photoinduced net oxidations 753
6.10.6 Generation of radical intermediates by PET 756
6.10.7 Dye?sensitized solar cells 758
6.11 Chemiluminescence and bioluminescence 759
6.11.1 Thermal isomerization of Dewar benzene into benzene 760
6.11.2 Oxygenation of electron?rich organic compounds 761
6.11.3 Thermal fragmentation of 1,2?dioxetanes 764
6.11.4 Peroxylate chemiluminescence 766
6.11.5 Firefly bioluminescence 766
References 767
Chapter 7 Catalytic reactions 827
7.1 Introduction 827
7.2 Acyl group transfers 830
7.2.1 Esterification and ester hydrolysis 830
7.2.2 Acid or base?catalyzed acyl transfers 831
7.2.3 Amphoteric compounds are good catalysts for acyl transfers 834
7.2.4 Catalysis by nucleofugal group substitution 834
7.2.5 N?heterocyclic carbene?catalyzed transesterifications 836
7.2.6 Enzyme?catalyzed acyl transfers 838
7.2.7 Mimics of carboxypeptidase A 839
7.2.8 Direct amide bond formation from amines and carboxylic acids 839
7.3 Catalysis of nucleophilic additions 842
7.3.1 Catalysis of nucleophilic additions to aldehydes, ketones and imines 842
7.3.2 Bifunctional catalysts for nucleophilic addition/elimination 843
7.3.3 ?? and ??Nucleophiles as catalysts for nucleophilic additions to aldehydes and ketones 844
7.3.4 Catalysis by self?assembled encapsulation 845
7.3.5 Catalysis of 1,4?additions (conjugate additions) 846
7.4 Anionic nucleophilic displacement reactions 847
7.4.1 Pulling on the leaving group 847
7.4.2 Phase transfer catalysis 848
7.5 Catalytical Umpolung C?C bond forming reactions 850
7.5.1 Benzoin condensation: Umpolung of aldehydes 851
7.5.2 Stetter reaction: Umpolung of aldehydes 853
7.5.3 Umpolung of enals 854
7.5.4 Umpolung of Michael acceptors 855
7.5.5 Rauhut–Currier reaction 858
7.5.6 Morita–Baylis–Hillman reaction 858
7.5.7 Nucleophilic catalysis of cycloadditions 860
7.5.8 Catalysis through electron?transfer: hole?catalyzed reactions 863
7.5.9 Umpolung of enamines 866
7.5.10 Catalysis through electron?transfer: Umpolung through electron capture 868
7.6 Brønsted and Lewis acids as catalysts in C?C bond forming reactions 868
7.6.1 Mukaiyama aldol reactions 871
7.6.2 Metallo?carbonyl?ene reactions 875
7.6.3 Carbonyl?ene reactions 878
7.6.4 Imine?ene reactions 879
7.6.5 Alder?ene reaction 880
7.6.6 Diels–Alder reaction 881
7.6.7 Brønsted and Lewis acid?catalyzed hetero?Diels?Alder reactions 883
7.6.8 Acid?catalyzed (2+2)?cycloadditions 885
7.6.9 Lewis acid catalyzed (3+2)? and (3+3)?cycloadditions 887
7.6.10 Lewis acid promoted (5+2)?cycloadditions 889
7.7 Bonding in transition metal complexes and their reactions 890
7.7.1 The ??complex theory 890
7.7.2 The isolobal formalism 892
7.7.3 ??Complexes of dihydrogen 895
7.7.4 ??Complexes of C?H bonds and agostic bonding 898
7.7.5 ??Complexes of C?C bonds and C?C bond activation 899
7.7.6 Reactions of transition metal complexes are modeled by reactions of organic chemistry 901
7.7.7 Ligand exchange reactions 901
7.7.8 Oxidative additions and reductive eliminations 905
7.7.9 ??Insertions/??eliminations 912
7.7.10 ??Insertions/??eliminations 915
7.7.11 ??Cycloinsertions/??cycloeliminations: metallacyclobutanes, metallacyclobutenes 918
7.7.12 Metallacyclobutenes: alkyne polymerization, enyne metathesis, cyclopentadiene synthesis 919
7.7.13 Metallacyclobutadiene: alkyne metathesis 921
7.7.14 Matallacyclopentanes, metallacyclopentenes, metallacyclopentadienes: oxidative cyclizations (??cycloinsertions) and reductive fragmentations (??cycloeliminations) 922
7.8 Catalytic hydrogenation 923
7.8.1 Heterogeneous catalysts for alkene, alkyne, and arene hydrogenation 924
7.8.2 Homogeneous catalysts for alkene and alkyne hydrogenation 926
7.8.3 Dehydrogenation of alkanes 929
7.8.4 Hydrogenation of alkynes into alkenes 929
7.8.5 Catalytic hydrogenation of arenes and heteroarenes 931
7.8.6 Catalytic hydrogenation of ketones and aldehydes 931
7.8.7 Catalytic hydrogenation of carboxylic acids, their esters and amides 934
7.8.8 Hydrogenation of carbon dioxide 935
7.8.9 Catalytic hydrogenation of nitriles and imines 936
7.8.10 Catalytic hydrogenolysis of C–halogen and C–chalcogen bonds 938
7.9 Catalytic reactions of silanes 938
7.9.1 Reduction of alkyl halides 938
7.9.2 Reduction of carbonyl compounds 939
7.9.3 Alkene hydrosilylation 941
7.10 Hydrogenolysis of C?C single bonds 942
7.11 Catalytic oxidations with molecular oxygen 943
7.11.1 Heme?dependent monooxygenase oxidations 944
7.11.2 Chemical aerobic C?H oxidations 946
7.11.3 Reductive activation of molecular oxygen 949
7.11.4 Oxidation of alcohols with molecular oxygen 950
7.11.5 Wacker process 952
7.12 Catalyzed nucleophilic aromatic substitutions 954
7.12.1 Ullmann–Goldberg reactions 955
7.12.2 Buchwald–Hartwig reactions 958
References 959
Chapter 8 Transition?metal?catalyzed C?C bond forming reactions 1061
8.1 Introduction 1061
8.2 Organic compounds from carbon monoxide 1062
8.2.1 Fischer–Tropsch reactions 1062
8.2.2 Carbonylation of methanol 1064
8.2.3 Hydroformylation of alkenes 1066
8.2.4 Silylformylation 1071
8.2.5 Reppe carbonylations 1073
8.2.6 Pd(II)?mediated oxidative carbonylations 1074
8.2.7 Pauson–Khand reaction 1075
8.2.8 Carbonylation of halides: synthesis of carboxylic derivatives 1079
8.2.9 Reductive carbonylation of halides: synthesis of carbaldehydes 1081
8.2.10 Carbonylation of epoxides and aziridines 1082
8.2.11 Hydroformylation and silylformylation of epoxides 1085
8.3 Direct hydrocarbation of unsaturated compounds 1085
8.3.1 Hydroalkylation of alkenes: alkylation of alkanes 1086
8.3.2 Alder ene?reaction of unactivated alkenes and alkynes 1088
8.3.3 Hydroarylation of alkenes: alkylation of arenes and heteroarenes 1089
8.3.4 Hydroarylation of alkynes: alkenylation of arenes and heteroarenes 1092
8.3.5 Hydroarylation of carbon?heteroatom multiple bonds 1094
8.3.6 Hydroalkenylation of alkynes, alkenes, and carbonyl compounds 1094
8.3.7 Hydroacylation of alkenes and alkynes 1095
8.3.8 Hydrocyanation of alkenes and alkynes 1098
8.3.9 Direct reductive hydrocarbation of unsaturated compounds 1099
8.3.10 Direct hydrocarbation via transfer hydrogenation 1101
8.4 Carbacarbation of unsaturated compounds and cycloadditions 1102
8.4.1 Formal [?2+?2]?cycloadditions 1104
8.4.2 (2+1)?Cycloadditions 1104
8.4.3 Ohloff–Rautenstrauch cyclopropanation 1109
8.4.4 [?2+?2]?Cycloadditions 1110
8.4.5 (3+1)?Cycloadditions 1112
8.4.6 (3+2)?Cycloadditions 1113
8.4.7 (4+1)?Cycloadditions 1119
8.4.8 (2+2+1)?Cycloadditions 1121
8.4.9 [?4+?2]?Cycloadditions of unactivated cycloaddents 1122
8.4.10 (2+2+2)?Cycloadditions 1128
8.4.11 (3+3)?Cycloadditions 1133
8.4.12 (3+2+1)?Cycloadditions 1134
8.4.13 (4+3)?Cycloadditions 1135
8.4.14 (5+2)?Cycloadditions 1137
8.4.15 (4+4)?Cycloadditions 1140
8.4.16 (4+2+2)?Cycloadditions 1141
8.4.17 (6+2)?Cycloadditions 1142
8.4.18 (2+2+2+2)?Cycloadditions 1143
8.4.19 (5+2+1)?Cycloadditions 1144
8.4.20 (7+1)?Cycloadditions 1144
8.4.21 Further examples of high?order catalyzed cycloadditions 1144
8.4.22 Annulations through catalytic intramolecular hydrometallation 1147
8.4.23 Oxidative annulations 1147
8.5 Didehydrogenative C?C?coupling reactions 1148
8.5.1 Glaser–Hay reaction: oxidative alkyne homocoupling 1148
8.5.2 Oxidative C?C cross?coupling reactions 1149
8.5.3 Oxidative aryl/aryl homocoupling reactions 1151
8.5.4 Oxidative aryl/aryl cross?coupling reactions 1153
8.5.5 TEMPO?cocatalyzed oxidative C?C coupling reactions 1154
8.5.6 Oxidative aminoalkylation of alkynes and active C?H moieties 1155
8.6 Alkane, alkene, and alkyne metathesis 1156
8.6.1 Alkane metathesis 1157
8.6.2 Alkene metathesis 1158
8.6.3 Enyne metathesis: alkene/alkyne cross?metathesis 1163
8.6.4 Alkyne metathesis 1165
8.7 Additions of organometallic reagents 1166
8.7.1 Additions of Grignard reagents 1168
8.7.2 Additions of alkylzinc reagents 1174
8.7.3 Additions of organoaluminum compounds 1175
8.7.4 Additions of organoboron, silicium , and zirconium compounds 1177
8.8 Displacement reactions 1180
8.8.1 Kharash cross?coupling and Kumada–Tamao–Corriu reaction 1180
8.8.2 Negishi cross?coupling 1186
8.8.3 Stille cross?coupling and carbonylative Stille reaction 1189
8.8.4 Suzuki–Miyaura cross?coupling 1193
8.8.5 Hiyama cross?coupling 1198
8.8.6 Tsuji–Trost reaction: allylic alkylation 1200
8.8.7 Mizoroki–Heck coupling 1203
8.8.8 Sonogashira–Hagihara cross?coupling 1211
8.8.9 Arylation of arenes(heteroarenes) with aryl(heteroaryl) derivatives 1214
8.8.10 ??Arylation of carbonyl compounds and nitriles 1219
8.8.11 Direct arylation and alkynylation of nonactivated C?H bonds in alkyl groups 1221
8.8.12 Direct alkylation of nonactivated C?H bonds in alkyl groups 1222
References 1223
Index 1349
EULA 1385
"Ich bin von diesem Buch begeistert, weil es mir als Dozenten eine unglaubliche Fülle an aktuellem Material zu Mechanismen und zu theoretischen Behandlung von organischen Reaktionen bietet. Als direktes Lehrbuch für einen M.Sc. Kurs ist es aufgrund des hochverdichteten Stoffes und der unglaublichen Datenmenge für Studierende nicht geeignet. Aufgrund der zahllosen Details gerät das große Ganze, das man in einer Lehrveranstaltung vermitteln möchte, etwas aus dem Blick. Ausschnittsweise könnte man es für einen Doktorandenkurs einsetzen. Es ist jedoch ein phantastisches Nachschlagewerk, das wir mit mehreren Exemplaren gerne in der Bibliothek und auch in meiner Abteilung vorhalten."
Prof. Dr. Michael Schmittel, Universität Siegen
Erscheint lt. Verlag | 30.7.2019 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Schlagworte | chemical engineers • chemical reaction • Chemie • Chemistry • Computational Chemistry & Molecular Modeling • Computational Chemistry u. Molecular Modeling • field presents tools • graduate students • Methods - Synthesis & Techniques • Organische Chemie • Organische Chemie / Methoden, Synthesen, Verfahren • Pericyclic Reactions • Physical Chemistry • physical chemists • Physikalische Chemie • Reactions • Reader • thermochemistry additivity rules • Tools |
ISBN-10 | 3-527-81925-8 / 3527819258 |
ISBN-13 | 978-3-527-81925-6 / 9783527819256 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 119,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich