Engineering Optics 2.0 -  Xiangang Luo

Engineering Optics 2.0 (eBook)

A Revolution in Optical Theories, Materials, Devices and Systems

(Autor)

eBook Download: PDF
2019 | 1. Auflage
XVIII, 701 Seiten
Springer Singapore (Verlag)
978-981-13-5755-8 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides comprehensive information on the history and status quo of a new research field, which we refer to as Engineering Optics 2.0. The content covers both the theoretical basis and the engineering aspects in connection with various applications. The field of Engineering Optics employs optical theories to practical applications in a broad range of areas. However, the foundation of traditional Engineering Optics was formed several hundred years ago, and the field has developed only very gradually. With technological innovations in both the fabrication and characterization of microstructures, the past few decades have witnessed many groundbreaking changes to the bases of optics, including the generalizing of refraction, reflection, diffraction, radiation and absorption theories. These new theories enable us to break through the barriers in traditional optical technologies, yielding revolutionary advances in traditional optical systems such as microscopes, telescopes and lithography systems. 



Prof. Xiangang Luo is currently director of the State Key Lab of Optical Technologies on Nano-fabrication and Micro-engineering (SKLOTNM), and president of the Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). His research interests include micro/nano-optics, plasmonics, metamaterials, sub-wavelength electromagnetics and catenary optics. He has published more than 300 scientific papers and holds 100 patents in optics and related fields. He is a fellow of the International Society for Optical Engineering (SPIE), Optical Society of America (OSA), Chinese Optical Society (COS), and International Academy of Photonics and Laser Engineering (IAPLE).

This book provides comprehensive information on the history and status quo of a new research field, which we refer to as Engineering Optics 2.0. The content covers both the theoretical basis and the engineering aspects in connection with various applications. The field of Engineering Optics employs optical theories to practical applications in a broad range of areas. However, the foundation of traditional Engineering Optics was formed several hundred years ago, and the field has developed only very gradually. With technological innovations in both the fabrication and characterization of microstructures, the past few decades have witnessed many groundbreaking changes to the bases of optics, including the generalizing of refraction, reflection, diffraction, radiation and absorption theories. These new theories enable us to break through the barriers in traditional optical technologies, yielding revolutionary advances in traditional optical systems such as microscopes, telescopesand lithography systems. 

Prof. Xiangang Luo is currently director of the State Key Lab of Optical Technologies on Nano-fabrication and Micro-engineering (SKLOTNM), and president of the Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). His research interests include micro/nano-optics, plasmonics, metamaterials, sub-wavelength electromagnetics and catenary optics. He has published more than 300 scientific papers and holds 100 patents in optics and related fields. He is a fellow of the International Society for Optical Engineering (SPIE), Optical Society of America (OSA), Chinese Optical Society (COS), and International Academy of Photonics and Laser Engineering (IAPLE).

Foreword I 5
Foreword II 5
Preface 9
Contents 11
1 Introduction to Engineering Optics 2.0 19
1.1 Definition of Engineering Optics 2.0 19
1.2 Basics of Engineering Optics 1.0 21
1.2.1 Historical and Theoretical Remarks 21
1.2.2 Material Basis 23
1.2.3 Design Methods 26
1.2.4 Manufacturing Technologies 28
1.3 Great Challenges of EO 1.0 29
1.3.1 Diffraction Optics 29
1.3.2 Refractive and Reflective Optics 30
1.3.3 Optical Absorption 32
1.3.4 Polarization Optics 33
1.3.5 Radiation and Emission 37
1.4 Opportunities Enabled by Subwavelength Structures 40
1.4.1 Emergence of Subwavelength Structures 40
1.4.2 Sub-diffraction Optics 45
1.4.3 Planar Optics 47
1.4.4 Modulation of Polarization Properties 50
1.4.5 Strategies for Dispersion Engineering 53
1.5 The Third Optical Revolution 55
1.6 Overview of the Book 59
References 61
2 Theoretical Basis 66
2.1 Theories and Laws in Classic Optics 66
2.1.1 From Fermat’s Principle to Snell’s Law and Fresnel’s Equations 66
2.1.2 From Kirchhoff’s Diffraction Theory to the Diffraction Limit 71
2.1.3 Absorption and Radiation Theory 76
2.2 Macroscopic and Microscopic Meta-surface-wave 77
2.2.1 Theory of Surface Plasmon Polariton 77
2.2.2 Spoof Surface Plasmon Polariton 80
2.2.3 Catenary Optical Fields and Catenary Dispersion 83
2.3 Generalized Laws of Refraction and Reflection 88
2.3.1 Extending Snell’s Law and Fresnel’s Equations 88
2.3.2 Propagation Phase Engineering 94
2.3.3 Circuit-Type Phase Engineering 97
2.3.4 Geometric Phase Engineering 100
2.4 Generalized Theory of Diffraction 105
2.4.1 Sub-diffraction-Limited Optics with Evanescent Waves 106
2.4.2 Sub-diffraction-Limited Optics Without Evanescent Waves 109
2.5 Generalized Theory of Absorption and Radiation 111
2.5.1 Generalized Absorption Theory 111
2.5.2 Generalized Radiation Theory 116
References 118
3 Material Basis 123
3.1 Introduction 123
3.2 Natural Materials 125
3.2.1 Metals 125
3.2.2 Refractory Plasmonic Materials 126
3.2.3 Semiconductors 126
3.2.4 Dielectric Materials 131
3.2.5 Phase Transition and Phase-Change Materials 133
3.2.6 Flexible Substrate Materials 136
3.2.7 Two-Dimensional Materials and van der Waals Materials 136
3.2.8 Perovskite Materials 142
3.3 Artificially Structured Materials 143
3.3.1 Effective Medium Theory 146
3.3.2 Negative-Index Materials 149
3.3.3 Near-Zero Index Materials 151
3.3.4 Ultra-High Index Materials 154
3.3.5 Hyperbolic Metamaterials 157
References 160
4 Numerical Modeling and Intelligent Designs 165
4.1 Introduction 165
4.2 Design Methods for Multilayers and Gratings 167
4.2.1 Transfer Matrix Method 168
4.2.2 Rigorous Coupled-Wave Analysis 173
4.3 Full-Wave Simulation Methods 177
4.3.1 FDTD 177
4.3.2 FEM 179
4.4 Optimizing Algorithms 180
4.4.1 Holographic Algorithms 180
4.4.2 Nature-Inspired Optimization Methods 183
4.4.3 Other Optimizing Algorithms 186
4.5 Intelligent Design and All-Optical Implementation 187
4.5.1 Intelligent Design Models 187
4.5.2 All-Optical Implementation 190
References 192
5 Fabrication Techniques 194
5.1 Status and Challenges of Manufacturing Techniques for EO 1.0 194
5.1.1 Manufacture of Refractive and Reflective Optical Elements 195
5.1.2 Manufacture of Diffractive Optical Elements 196
5.1.3 Challenges for Traditional Optical Manufacturing 210
5.2 Fabrication of Layered Structures 211
5.2.1 Ultra-Smooth and Single-Crystalline Metal Films 211
5.2.2 Layered Metal–Dielectric Hyperbolic Metamaterials 215
5.3 Direct Writing of Subwavelength Patterns 218
5.3.1 Laser Direct Writing 218
5.3.2 Focused Ion-/Electron-Beam-Based Methods 225
5.3.3 Electron-Beam Direct Writing 229
5.3.4 Data Compression for Direct Writing 234
5.4 Batch Fabrication of Subwavelength Structures 237
5.4.1 Laser Interference Lithography 237
5.4.2 Projection Optical Lithography 240
5.4.3 NanoImprint Lithography 243
5.4.4 Bottom-up Fabrication 248
5.5 Challenges of Fabrication Techniques for EO 2.0 250
References 253
6 Super-resolution Microscopy 258
6.1 Introduction 258
6.2 Negative Refractive Lens Microscopy 260
6.3 Superlens Microscopy 262
6.3.1 Operation Principle 262
6.3.2 Near-Field Superlens Microscopy 263
6.3.3 Far-Field Superlens Microscopy 264
6.4 Hyperlens Magnifying Microscopy 267
6.4.1 Broadband Evanescent Waves Enhancement in Hyperlens 269
6.4.2 Directional Propagation of Light in Hyperlens 270
6.4.3 Far-Field Magnified Microscopy 271
6.5 Super-resolution Phase-Contrast Microscopy 274
6.6 Surface Imaging Microscopy 278
6.7 Microsphere and Micro-cylinder Microscopy 285
6.7.1 Photonic Nanojets Generated by Engineered Microspheres 285
6.7.2 Nanoscopy Based on Dielectric Microsphere and Cylinder 286
6.8 Super-oscillation and Supercritical Microscopy 292
6.8.1 Super-oscillation Microscopy 292
6.8.2 Supercritical Microscopy 296
6.8.3 Bessel-Beam Microscopy 298
References 303
7 Sub-Diffraction-Limited Nanolithography 308
7.1 Introduction 308
7.2 Plasmonic Interference Lithography 312
7.2.1 Extraordinary Young’s Interference and Catenary Optical Fields 312
7.2.2 Principle of Plasmonic Interference Lithography 315
7.2.3 Odd SPPs Mode Interference Lithography 319
7.2.4 Spatial Frequency Filtering and BPPs Interference Lithography 322
7.2.5 Two-Surface Plasmon Polaritons Interference Lithography 325
7.3 Plasmonic Imaging Lithography 327
7.3.1 Superlens Lithography 327
7.3.2 Plasmonic Reflective Lens Lithography 331
7.3.3 Plasmonic Cavity Lens Lithography 333
7.3.4 Demagnification Through Hyperlens 335
7.3.5 Wavefront Engineering 338
7.4 Plasmonic Direct Writing Lithography 342
7.4.1 Nanofocusing with SPPs and BPPs 342
7.4.2 LSPs Lithography with Nanoaperture 345
7.4.3 LSPs Lithography with Tips 347
7.5 Engineering Aspects of Plasmonic Nanolithography 348
7.5.1 High Aspect Ratio Pattern Transfer Process 348
7.5.2 Multiple-Patterning Technique 349
7.5.3 Equipment and Systems 350
7.6 Applications of Plasmonic Nanolithography 356
7.6.1 High Sensitivity Detectors 356
7.6.2 Cancer Diagnosis 356
7.6.3 Color Generation Applications 358
7.6.4 Metasurfaces Fabrication 358
7.6.5 Nanoimprint Masters Fabrication 360
7.7 Outlook 361
References 361
8 Sub-Diffraction-Limited Telescopies 366
8.1 Introduction 366
8.2 Super-Oscillation Telescopy 368
8.2.1 Super-Oscillation Telescopy with Dielectric Pupil Filter 370
8.2.2 Super-Oscillation Telescopy with Metasurfaces 374
8.2.3 Achromatic Super-Oscillation Telescopy 382
8.3 Optical Telescope Based on Orbital Angular Momentum 387
References 390
9 Metalenses and Meta-mirrors 393
9.1 Lenses in Traditional Optics 393
9.2 Planar Metalens and Meta-mirror 396
9.3 High-NA Metalens 405
9.4 Wide Field-of-View Metalens 411
9.5 Achromatic and Super-dispersive Elements 418
9.5.1 Multi-wavelength Achromatic Metalens 419
9.5.2 Broadband Achromatic Metalens 427
9.5.3 Super-dispersive Metalens 433
9.6 Tunable Metalenses 435
9.6.1 Tunable Metalens with Mechanical Stretching and Moving 435
9.6.2 Tunable Metalens with Nonlinear or Phase-Change Materials 438
9.6.3 Tunable Metalens with MEMS 441
9.7 Nonlinear Metalenses 444
References 447
10 Generation and Manipulation of Special Light Beams 453
10.1 Special Light Beams 453
10.2 Interaction of Light Beam with Interface 456
10.2.1 PSHE with Spin-Redirection Phase 458
10.2.2 PSHE with PB Phase 460
10.3 Vortex Beam Generation 466
10.3.1 OAM Generator with Discrete Phase Engineering 467
10.3.2 OAM Multiplexing and Demultiplexing with Metasurfaces 471
10.3.3 OAM Generator with Continuous Phase Engineering 473
10.3.4 Vectorial Vortex Beam Generation 477
10.4 Bessel Beam Generation 481
10.4.1 Bessel Beam Generator with Discrete Phase Engineering 482
10.4.2 Bessel Beam Generator with Continuous Phase Engineering 483
10.5 Airy Beam Generation 486
10.5.1 Airy Plasmon Generator 488
10.5.2 Free-Space Airy Beam Generator 491
References 492
11 Structural Colors and Meta-holographic Display 496
11.1 Introduction 496
11.2 Structural Colors 498
11.2.1 Transmissive Structural Colors 499
11.2.2 Reflective Structural Colors 503
11.2.3 Polarization-Encoded Structural Colors 505
11.2.4 Dynamic Structural Colors 509
11.3 Meta-holography Display 515
11.3.1 Ultra-broadband Meta-holography 516
11.3.2 Vectorial Meta-holography 523
11.3.3 Off-Axis Colorful Meta-holography 527
11.3.4 Three-Dimensional Meta-holography 530
11.3.5 High-Efficiency and Broadband Meta-holography 531
11.3.6 Dynamic Holography 533
11.4 Simultaneous Structural Color and Hologram 536
References 541
12 Polarization Manipulation, Detection, and Imaging 544
12.1 Introduction 544
12.1.1 Birefringent Crystals 546
12.1.2 Optical Activity 547
12.1.3 Interfacial Polarization Effect 548
12.2 Artificial Anisotropic and Chiral Materials 548
12.2.1 Anisotropic Phase Engineering 548
12.2.2 Circular Dichroism 570
12.3 Polarization Manipulation in Integrated Waveguides 578
12.3.1 Integrated Polarization Converter 578
12.3.2 Integrated Polarization Splitters/Routers 579
12.4 Polarization Measurement 585
12.4.1 Polarization Measurement in Free Space 585
12.4.2 Polarization Measurement in Integrated Optical Waveguide 586
12.5 Polarimetric Imaging 588
References 596
13 Perfect Absorption of Light 599
13.1 Introduction 599
13.2 Narrowband and Multi-band Metamaterial Absorbers 602
13.2.1 Wave-Impedance Match 602
13.2.2 Free-Bound Wave Exchange 603
13.2.3 Super-Unit Cell Design 605
13.3 Broadband Absorbers 606
13.3.1 Broadband Absorption Based on Mode Hybridization 606
13.3.2 Broadband Absorption Based on Destructive Interferences 610
13.3.3 Broadband Absorption Based on Dispersion Engineering 611
13.3.4 Broadband Absorption Based on Optimization Algorithm 622
13.4 Coherent Perfect Absorbers 624
13.5 Perfect Absorbers Based on Special Materials 631
13.5.1 Wide-Angle and Omnidirectional Absorbers 631
13.5.2 Transparent Absorbers 636
13.5.3 Refractory Absorber 638
13.6 Solar Cells Based on Thin Absorber 642
13.7 Sensors Based on Narrowband Absorber 649
References 652
14 Radiation Engineering and Optical Phased Array 656
14.1 Introduction 656
14.2 Thermal Radiations 659
14.2.1 Spectrally Selective and Directional Thermal Radiations 659
14.2.2 Near-Field Thermal Radiations 665
14.2.3 Thermophotovoltaics 667
14.2.4 Daytime Radiative Cooling 672
14.2.5 Thermal Cloak and Camouflage 675
14.3 Light-Emitting Diodes 678
14.3.1 Quantum Dot-Based LEDs 678
14.3.2 Perovskite LEDs 682
14.4 Micro- and NanoLasers 683
14.5 Optical Phased Arrays 687
14.5.1 Silicon Chip-Based OPA and Solid-State LIDAR 688
14.5.2 Nanophotonic Projection System Based on OPA 692
14.5.3 Metasurface-Based OPA 693
References 698

Erscheint lt. Verlag 28.2.2019
Zusatzinfo XVIII, 690 p. 553 illus., 511 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Engineering Optics • evanescent wave • Metasurface and metamaterial • Orbital angular momentum • Perfect absorbers • Spin-orbit interaction • Subwavelength Interference • Xiangang Luo
ISBN-10 981-13-5755-2 / 9811357552
ISBN-13 978-981-13-5755-8 / 9789811357558
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 51,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99