Crowd Dynamics, Volume 1 (eBook)

Theory, Models, and Safety Problems

Livio Gibelli, Nicola Bellomo (Herausgeber)

eBook Download: PDF
2019 | 1st ed. 2018
X, 292 Seiten
Springer International Publishing (Verlag)
978-3-030-05129-7 (ISBN)

Lese- und Medienproben

Crowd Dynamics, Volume 1 -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume explores the complex problems that arise in the modeling and simulation of crowd dynamics in order to present the state-of-the-art of this emerging field and contribute to future research activities. Experts in various areas apply their unique perspectives to specific aspects of crowd dynamics, covering the topic from multiple angles. These include a demonstration of how virtual reality may solve dilemmas in collecting empirical data; a detailed study on pedestrian movement in smoke-filled environments; a presentation of one-dimensional conservation laws with point constraints on the flux; a collection of new ideas on the modeling of crowd dynamics at the microscopic scale; and others. Applied mathematicians interested in crowd dynamics, pedestrian movement, traffic flow modeling, urban planning, and other topics will find this volume a valuable resource. Additionally, researchers in social psychology, architecture, and engineering may find this information relevant to their work.

Preface 6
Contents 8
Contributors 9
Behavioral Human Crowds 11
1 Plan of the Chapter 11
2 On the Modeling of Crowd Dynamics 12
3 On the Contents of the Edited Book 18
4 Critical Analysis and Perspectives 20
References 22
Crowd Dynamics in Virtual Reality 25
1 Introduction 26
1.1 When to (Not) Use VR 27
2 VR Studies of Crowd Behavior 29
2.1 Comparing Virtual and Real Behavior 29
2.1.1 Walking in VR 30
2.1.2 Social Interactions in VR 30
2.1.3 Comparing Crowd Dynamics in Real and Virtual Environments 31
2.2 Crowd Dynamics in VR 34
2.2.1 Behavioral Dynamics in VR 36
2.3 VR Studies of Crowd Evacuation Behavior 38
3 The Road Ahead 42
References 43
Pedestrian Movement in Smoke: Theory, Data and Modelling Approaches 47
1 Introduction 47
2 Theory and Data 49
2.1 Fire Factors 49
2.1.1 Visibility 50
2.1.2 Irritancy 52
2.1.3 Cognitive and Emotional Influences 53
2.1.4 Tenability 53
2.2 Pedestrian Factors 54
2.2.1 Unimpeded Movement Speed 54
2.2.2 Visual Acuity 54
2.2.3 Physical Exertion 55
2.3 Environmental Factors 55
2.3.1 Geometric Complexity 55
2.3.2 Way-Finding Systems 56
2.3.3 Inclination, Stairs and Surface Material 56
3 Modelling Pedestrian Movement in Smoke 57
3.1 Modelling the Impact of Reduced Visibility Conditions 59
3.2 Modelling Way-Finding in Smoke 63
4 Discussion 65
5 Conclusion 67
References 67
Pedestrian Dynamics: From Empirical Results to Modeling 73
1 Introduction 73
2 Empirical Results 74
2.1 Observables: Flow, Density, and Velocity 75
2.1.1 Flow 75
2.1.2 Density 77
2.1.3 Mean Speed 78
2.2 Collective Phenomena 79
2.2.1 Jamming and Clogging 79
2.2.2 Density Waves, Stop-and-Go Waves 80
2.2.3 Lane Formation 81
2.2.4 Other Collective Effects 82
2.2.5 Emergency Situations, ``Panic'' 83
2.3 Fundamental Diagram 83
2.3.1 Single-File Movement in Circuit 83
2.3.2 Pedestrian Movement in Straight Corridor 84
2.3.3 Pedestrian Movement Through Bottlenecks 85
2.3.4 Pedestrian Movement on Stairs 86
2.3.5 Other Geometries 87
3 Classification of Models 87
3.1 Acceleration-Based Models 91
3.2 Velocity-Based Models 93
3.3 Decision-Based Models 95
3.3.1 Cellular Automata 96
3.3.2 Floor Field Model 97
3.3.3 Other CA Models and Related Approaches 99
4 Performance of Models: Quantitative and Qualitative ``Benchmarking'' 100
4.1 Stability Analysis 100
4.2 Verification and Validation 101
5 Summary 102
References 103
One-Dimensional Conservation Laws with Nonlocal Point Constraints on the Flux 113
1 Introduction 113
2 Nonlocally Constrained LWR 116
2.1 Existence and Uniqueness Results 117
2.2 Finite Volume Approximation 120
2.3 Examples 122
3 Locally Constrained ARZ 127
3.1 Existence and Uniqueness Results 129
3.2 Example 132
4 Locally Constrained PT 137
4.1 Existence Result 138
4.2 Example 141
References 143
Measure-Theoretic Models for Crowd Dynamics 146
1 Introduction 146
2 Microscopic and Multi-scale Models 148
2.1 Microscopic: The Social Force Models 148
2.1.1 Panic 150
2.2 Microscopic: Models for Animal Groups 150
2.3 Microscopic: Cucker-Smale Model 151
2.4 Multi-scale Models 152
2.4.1 The Wasserstein Distance 153
2.4.2 Existence and Uniqueness of Solutions to (6) 155
2.4.3 Regularity of Interaction Kernels 156
2.5 Wasserstein Distance and Total Variation Norm 158
3 Mean-Field Limits of Microscopic Models 160
3.1 Definition of the Mean-Field Limit 160
3.2 The Mean-Field Limit of the Helbing-Molnár Model 163
4 Microscopic Models with Varying Mass 165
5 Measure Dynamics for Mass-Varying Models 168
5.1 The Generalized Wasserstein Distance 168
5.2 The Mean-Field Limit for Mass-Varying Models 169
References 172
Numerical Methods for Mean-Field and Moment Modelsfor Pedestrian Flow 175
1 Introduction 175
2 Pedestrian Flow Models 178
2.1 A Microscopic Social Force Model with Optimal Path Computation 178
2.2 Mean Field and Macroscopic Limits 180
2.3 Scalar Macroscopic Models 184
3 Numerical Methods 186
3.1 Macroscopic Flow Simulation Using Finite-Volume Methods 186
3.2 Particle Methods for Macroscopic Equations 187
3.3 A Multi-scale Particle Method Based on the Mean-Field Approximation 189
4 Numerical Results 189
4.1 Numerical Transition from Microscopic to Macroscopic Description 189
4.2 Numerical Comparison of Macroscopic Equations 192
5 Multigroup Traffic 199
5.1 The Microscopic Multigroup Model 199
5.2 The Multigroup Hydrodynamic Model 201
5.3 The Multigroup Scalar Model 202
5.4 Numerical Results 203
5.4.1 Comparison Between Single and Multigroup Pedestrian Flow Models with Weak and Strong Reciprocal Interaction 204
5.4.2 Comparison Between Models with Weak and Strong Centre of Mass Attraction 204
5.5 Discussion of Experimental Data 205
6 Coupling Pedestrian to Traffic Flow 207
6.1 The Traffic and Pedestrian Flow Model 207
6.2 The Coupling 208
6.3 Numerical Methods and Results 209
7 Conclusions and Outlook 213
References 214
Modelling Interactions Between Active and Passive AgentsMoving Through Heterogeneous Environments 218
1 Introduction 218
2 Related Contributions 220
3 Agent-Based Dynamics (Model 1) 221
3.1 Active Agents 221
3.2 Passive Agents 224
3.3 Smoke Effects 226
4 Results Model 1: Agent-Based Dynamics 227
5 Lattice Gas Dynamics (Model 2) 231
6 Results Model 2: Lattice Gas Dynamics 234
7 Mathematical Aspects of Social Dynamics in Mixed Populations 235
7.1 Technical Preliminaries, Notation, and Assumptions 236
7.1.1 Geometry 236
7.1.2 Function Spaces 236
7.1.3 Hypotheses 238
7.1.4 First-Order Social Agents Dynamics 238
7.2 Well-Posedness 240
7.3 Background Results 249
7.3.1 A Regularized Eikonal Equation 249
7.3.2 Higher Regularity Estimates for the Smoke Concentration 250
8 Discussion 261
References 262
Pedestrian Models Based on Rational Behaviour 265
1 Introduction 265
2 A Model with Rational Behaviour 267
2.1 Perception Stage 268
2.1.1 Pairwise Encounters 268
2.1.2 Assumptions on the Heuristics 269
2.1.3 Global Encounters 270
2.2 Decision Stage 271
2.2.1 The Decision Potential 271
2.2.2 A Choice of Potential 272
2.3 A Gradient-Based Formulation 272
2.3.1 Optimality Versus Efficiency 273
2.4 Summary of the General Model 273
3 Towards a High-Density Model 274
3.1 A Frontal Collision 274
3.2 Grading by Collision Severity 276
3.3 Modelling Variable Speeds 277
3.4 Environmental Coercion 280
3.4.1 Repulsion as Anticipation 283
3.4.2 Friction and the Fundamental Diagram 284
3.5 Summary of the Modified Gradient Model 288
4 Conclusion and Outlook 293
Supplementary Material 295
Data Statement 295
References 295

Erscheint lt. Verlag 22.1.2019
Reihe/Serie Modeling and Simulation in Science, Engineering and Technology
Modeling and Simulation in Science, Engineering and Technology
Zusatzinfo X, 292 p. 103 illus., 82 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte collective intelligence • Complex Systems • Crowd dynamics • Crowd modeling and simulation • Fire and smoke dynamics • Homogeneous crowds • particle methods • Pedestrian movement • Traffic Flow • virtual reality applications
ISBN-10 3-030-05129-3 / 3030051293
ISBN-13 978-3-030-05129-7 / 9783030051297
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99