Kelvin Probe Force Microscopy -

Kelvin Probe Force Microscopy

From Single Charge Detection to Device Characterization
Buch | Softcover
XXIV, 521 Seiten
2019 | 1. Softcover reprint of the original 1st ed. 2018
Springer International Publishing (Verlag)
978-3-030-09298-6 (ISBN)
213,99 inkl. MwSt

This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics.

In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors' previous volume "Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces," presents new and complementary topics.

It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.


Sascha Sadewasser has been the Principal Investigator of the Laboratory for Nanostructured Solar Cells at INL - International Iberian Nanotechnology Laboratory (Portugal) since 2011. In 1999, he received his PhD from Washington University in St. Louis (USA). After a post-doc at Hahn-Meitner Institut Berlin and a Ramón y Cajal fellowship at the CNM in Barcelona (Spain), he was a group leader at the Helmholtz-Zentrum Berlin (Germany). Sascha's research focuses on the development of nanostructures for and of chalcopyrite materials for the improvement of solar cells. He is an expert on scanning probe microscopy, and specifically Kelvin probe force microscopy, applied to semiconductor and solar cell research. His work has provided important insights into the physics of grain boundaries in polycrystalline Cu(in,Ga)Se2 thin-film solar cells. He has published over 80 peer-reviewed papers and 5 book chapters, and has been granted 3 patents. He is also a member of several scientific committees and evaluation boards.

Part I: Technical aspects.- Experimental technique and working modes.- Dissipation KPFM.- KPFM techniques for liquid environment.- Open-loop and excitation KPFM.- Quantitative KPFM on semiconductor devices.- KPFM with atomic resolution.- KPFM with atomic resolution.- Part II: Theoretical Aspects.- Local dipoles in atomic and Kelvin probe force microscopy.- Influence of the tip electrostatic field on high resolution KPFM measurements.- Modelling the electrostatic field of a cantilever.- Theory of open-loop KPFM.- KPFM in a SPM simulator.- Electrostatic interactions with dielectric samples.- Part III: Applications.- Kelvin spectroscopy of single molecules.- KPFM for single molecule chemistry.- Optoelectronic properties of single molecules.- Quantitative KPFM of molecular self-assemblies.- Applications of KPFM in liquids.- KPFM of organic solar cell materials.- Correlation of optical and electrical nanoscale properties of organic devices.- KPFM for catalysis.- Quantitative electrical measurements of SiC devices.

Erscheinungsdatum
Reihe/Serie Springer Series in Surface Sciences
Zusatzinfo XXIV, 521 p. 234 illus., 194 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 831 g
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie
Schlagworte electrostatic field of a cantilever • Electrostatic Force Microscopy • Kelvin spectroscopy of single molecules • KPFM techniques for liquid environment • KPFM with atomic resolution • Scanning Kelvin Probe microscopy
ISBN-10 3-030-09298-4 / 3030092984
ISBN-13 978-3-030-09298-6 / 9783030092986
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich