Lasso-MPC – Predictive Control with ℓ1-Regularised Least Squares - Marco Gallieri

Lasso-MPC – Predictive Control with ℓ1-Regularised Least Squares

(Autor)

Buch | Softcover
XXX, 187 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-80247-3 (ISBN)
139,09 inkl. MwSt
This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. While standard control techniques lead to continuous movements of all actuators, this approach enables a selected subset of actuators to be used, the others being brought into play in exceptional circumstances. The same approach can also be used to obtain asynchronous actuator interventions, so that control actions are only taken in response to large disturbances. This thesis presents a straightforward and systematic approach to achieving these practical properties, which are ignored by mainstream control theory.

Marco Gallieri received a PhD in Engineering as an EPSRC scholar from Sidney Sussex College, the University of Cambridge, in 2014. His research was on Model Predictive Control for redundantly actuated systems, with focus on marine and air vehicles. In 2007 he received a BSc and in 2009 an MSc in information and industrial automation engineering from the Universita' Politecnica delle Marche, in Italy. He wrote his MSc thesis in 2009 during an Erasmus exchange at the National University of Ireland Maynooth in collaboration with BioAtlantis Ltd and Enterprise Ireland. The topic was modeling and control design for a crane-vessel for seaweed harvesting. Between May and September 2010 he was a Marie Curie early state researcher at the Instituto Superior Tecnico in Lisbon, working on non-linear methods for formation control of autonomous underwater vehicles with range only measurements. He is author of ten international conference papers as well as a Journal article. Since February 2014 he is with McLaren Racing Ltd. From July 2015 he is involved in the development of the F1 car simulator. Previously he worked as a control systems engineer and developed a model based Li-Ion battery management system for the 2015 Honda power unit. Further relevant projects included car speed and attitude estimation via sensor fusion, predictive analytics for fuel sensor management and fuel system design optimization.

Introduction.- Background.- Principles of LASSO MPC.- Version 1: `1-Input Regularised Quadratic MPC.- Version 2: LASSO MPC with stabilising terminal cost.- Design of LASSO MPC for prioritised and auxiliary actuators.- Robust Tracking with Soft-constraints.- Ship roll reduction with rudder and fins.- Concluding Remarks.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo XXX, 187 p. 64 illus., 54 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 3401 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Schlagworte 1-regularised least squares loss function MPC • Asychronous actuator interventions • ℓ1-regularised least squares loss function MPC • LASSO cost function • LASSO Model Predictive Control • Least Absolute Shrinkage and Selection • Model Predictive Control • MPC • Novel MPC Strategy • Operator • Sparse actuation Model Predictive Control • standard control techniques
ISBN-10 3-319-80247-X / 331980247X
ISBN-13 978-3-319-80247-3 / 9783319802473
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95