Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors -  Yating Hu

Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors (eBook)

(Autor)

eBook Download: PDF
2018 | 1st ed. 2018
XXIV, 108 Seiten
Springer Singapore (Verlag)
978-981-10-8342-6 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This thesis examines electrode materials such as mesoporous carbons, manganese oxides, iron oxides and their nanohybrids with graphene. It also explores several of the key scientific issues that act as the governing principles for future development of supercapacitors, which are a promising class of high-efficiency energy storage devices for tackling a key aspect of the energy crisis. However, critical technical issues, such as the low energy density and reliability, need to be addressed before they can be extended to a wide range of applications with much improved performance. Currently available material candidates for the electrodes all have their disadvantages, such as a low specific capacitance or poor conductivity for transition metal oxide/hydroxide-based materials.

This thesis addresses these important issues, and develops a high-performance, flexible asymmetric supercapacitor with manganese oxides/reduced graphene oxide as the positive electrode and iron oxide/reduced graphene oxide as the anode, which delivers a high energy density of 0.056 Wh cm-3.



Dr. Yating HU received both of her Bachelor and Doctoral degrees in Department of Materials Science and Engineering from the National University of Singapore (in the year of 2011 and 2017, respectively). From the year of 2011 to 2012, she worked as a process engineer in solar cell industry but her passion for research in materials science had driven her to come back to the university and pursue her Ph.D. degree.

Her supervisor during Ph.D. studies is Prof. John Wang and her research focused on nanomaterials for energy storage application. She mainly used carbon, manganese oxides and iron oxides based materials to develop various electrodes for supercapacitors. After obtaining her Ph.D., she has been working as a research fellow in the same group. Currently, she is working on manganese compound based nanomaterials for energy storage and electrocatalysis applications.


This thesis examines electrode materials such as mesoporous carbons, manganese oxides, iron oxides and their nanohybrids with graphene. It also explores several of the key scientific issues that act as the governing principles for future development of supercapacitors, which are a promising class of high-efficiency energy storage devices for tackling a key aspect of the energy crisis. However, critical technical issues, such as the low energy density and reliability, need to be addressed before they can be extended to a wide range of applications with much improved performance. Currently available material candidates for the electrodes all have their disadvantages, such as a low specific capacitance or poor conductivity for transition metal oxide/hydroxide-based materials. This thesis addresses these important issues, and develops a high-performance, flexible asymmetric supercapacitor with manganese oxides/reduced graphene oxide as the positive electrode and iron oxide/reduced graphene oxide as the anode, which delivers a high energy density of 0.056 Wh cm-3.

Dr. Yating HU received both of her Bachelor and Doctoral degrees in Department of Materials Science and Engineering from the National University of Singapore (in the year of 2011 and 2017, respectively). From the year of 2011 to 2012, she worked as a process engineer in solar cell industry but her passion for research in materials science had driven her to come back to the university and pursue her Ph.D. degree. Her supervisor during Ph.D. studies is Prof. John Wang and her research focused on nanomaterials for energy storage application. She mainly used carbon, manganese oxides and iron oxides based materials to develop various electrodes for supercapacitors. After obtaining her Ph.D., she has been working as a research fellow in the same group. Currently, she is working on manganese compound based nanomaterials for energy storage and electrocatalysis applications.

Supervisor’s Foreword 6
Parts of this thesis have been published in the following journal articles:Y. Hu, H. Liu, Q. Ke and J. Wang, “Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process”. Journal of Materials Chemistry A, 2 (2014) 11753–11758.Y. Hu and J. Wang, “MnOx nanosheets for improved electrochemical performances through bilayer nano-architecting”. Journal of Power Sources, 286 (2015) 394–399.Y. Hu, C. Guan, G. Feng and J. Wang, “Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/rGO nanohybrid paper with high energy and power density”. Advanced Functional Materials, 25(2015) 7291-7299.Y. Hu, C. Guan and J. Wang, “Hybrid Fe2O3 nano-cluster/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors”, Chemistry of Materials, 28 (2016) 7296–7303.Y. Hu, Y. Zhang, Y. Cai and J. Wang, “Controllable structure transitions of Mn3O4 nanomaterials and their effects on electrochemical properties”, Nanoscale Horizons, 2 (2017) 326–332. 8
Acknowledgements 9
Contents 10
List of Figures 13
List of Tables 19
Symbols 20
1 Introduction 22
1.1 Brief Overview of Supercapacitors 22
1.2 What Makes a Good Supercapacitor Electrode Material 23
1.3 Recent Advances and Challenges 25
1.3.1 Advantages of Supercapacitors 25
1.3.2 Challenges of Supercapacitors 26
1.3.3 Asymmetric Supercapacitors 27
1.3.4 Flexible Supercapacitors 28
1.4 Electrode Materials for Supercapacitors 30
1.4.1 Carbon Materials 30
1.4.1.1 Activated Carbons (ACs) 31
1.4.1.2 Graphene 31
1.4.1.3 Templated Mesoporous Carbon Materials (MCMs) 32
1.4.2 Conducting Polymers 32
1.4.2.1 Polyaniline 34
1.4.2.2 Polypyrrole 34
1.4.3 Transition Metal Oxides and Their Hybrids 35
1.4.3.1 Manganese Oxides 36
1.4.3.2 Manganese Oxides and Carbon-Based Hybrids 38
1.4.3.3 Ruthenium Oxides 41
1.4.3.4 Nickel Oxide/Hydroxide 42
1.4.3.5 Iron Oxides 43
1.5 Project Motivations and Designs 43
1.6 Research Objectives 45
References 46
2 Experimental Section 51
2.1 Materials 51
2.2 Materials Synthesis 51
2.3 Characterizations 52
2.3.1 Chemical and Composition Analysis 52
2.3.2 Morphological Studies 52
2.3.3 Electrochemical Measurements 53
3 Nitrogen Doping of Mesoporous Carbon Materials 54
3.1 Introduction 54
3.2 Synthesis Methods 55
3.3 Results and Discussion 56
3.3.1 Microstructure and Chemical Composition Characterizations 56
3.3.2 Electrochemical Characterizations 60
3.4 Remarks 65
References 65
4 Improving the Surface Area and Loading Mass of MnOx Based Electrode Materials 67
4.1 Introduction 67
4.2 Synthesis Methods and Electrochemical Characterizations 68
4.3 Results and Discussion 69
4.3.1 Characterizations of the First Layer of MnO2 Nanosheet 69
4.3.2 Bilayer Integration and Characterizations 71
4.4 Remarks 78
References 78
5 Mn3O4 Nanomaterials with Controllable Morphology and Particle Sizes 80
5.1 Introduction 80
5.2 Synthesis Methods 81
5.3 Results and Discussions 81
5.3.1 Temperature of Hydrothermal Growth 81
5.3.2 Tuning of Particle Sizes Through CTAB 84
5.3.3 Electrochemical Characterization of Mn3O4 Nanoparticles/rGO Hybrid 86
5.4 Remarks 88
References 89
6 Optimized Hybrid Mn3O4 Nanofiber/rGO Paper for High Performance Flexible ASCs 91
6.1 Introduction 91
6.2 Synthesis Methods 92
6.3 Results and Discussion 92
6.3.1 Electrochemical Reduction of Hybrid Mn3O4/GO Papers 92
6.3.2 Characterizations of the MG Papers 95
6.3.3 Electrochemical Performance of MG//rGO ASCs 97
6.3.3.1 Using Aqueous Electrolyte 98
6.3.3.2 Using Ionic Liquid Electrolyte 101
6.4 Remarks 102
References 105
7 Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper for Flexible Supercapacitors 107
7.1 Introduction 107
7.2 Synthesis Methods 108
7.3 Results and Discussion 108
7.3.1 Fe2O3/rGO Characterizations 108
7.3.2 Electrochemical Characterizations of rGO and FG Papers 111
7.3.3 Asymmetric Supercapacitor and Electrochemical Tests 116
7.4 Remarks 119
References 119
8 Conclusions and Recommendations 121
8.1 Conclusions 121
8.2 Recommendations 123
References 124

Erscheint lt. Verlag 23.6.2018
Reihe/Serie Springer Theses
Zusatzinfo XXIV, 108 p. 57 illus., 33 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Activated Carbons • Electrode Nanomaterials • Graphene • Hybrid Nanomaterials • Iron Oxide Nanoparticle Cluster • Manganese Oxide Nanofibre • Manganese Oxide Nanoparticle • Manganese Oxide Nanosheet • Mesoporous Carbons Materials (MCMs) • rGO Paper
ISBN-10 981-10-8342-8 / 9811083428
ISBN-13 978-981-10-8342-6 / 9789811083426
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Fundamentals and Methods

von Thomas Fauster; Lutz Hammer; Klaus Heinz …

eBook Download (2020)
De Gruyter Oldenbourg (Verlag)
49,95
Concepts, Phenomena, and Applications

von Wim van Saarloos; Vincenzo Vitelli; Zorana Zeravcic

eBook Download (2023)
Princeton University Press (Verlag)
94,99