Computational Photonic Sensors (eBook)

eBook Download: PDF
2018 | 1st ed. 2019
VIII, 452 Seiten
Springer International Publishing (Verlag)
978-3-319-76556-3 (ISBN)

Lese- und Medienproben

Computational Photonic Sensors -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a comprehensive overview of the photonic sensing field by covering plasmonics, photonic crystal, and SOI techniques from theory to real sensing applications. A literature review of ultra-sensitive photonic sensors, including their design and application in industry, makes this a self-contained and comprehensive resource for different types of sensors, with high value to the biosensor sector in particular. The book is organized into four parts: Part I covers the basic theory of wave propagation, basic principles of sensing, surface plasmon resonance, and silicon photonics; Part II details the computational modeling techniques for the analysis and prediction of photonic sensors; Part III and Part IV  cover the various mechanisms and light matter interaction scenarios behind the design of photonic sensors including photonic crystal fiber sensors and SOI sensors. This book is appropriate for academics and researchers specializing in photonic sensors; graduate students in the early and intermediate stages working in the areas of photonics, sensors, biophysics, and biomedical engineering; and to biomedical, environmental, and chemical engineers.

Mohamed Farhat O. Hameed is an Associate Professor at the Center for Photonics and Smart Materials, and Nanotehcnology Engineering Program, Zewail City of Science and Technology, Giza, Egypt. M. Hameed is also with Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Salah Obayya is Professor of Photonics and Director of the Center for Photonics and Smart Materials at the Zewail City of Science and Technology, Giza, Egypt. S. Obayya is also with Electronics and Communication Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Mohamed Farhat O. Hameed is an Associate Professor at the Center for Photonics and Smart Materials, and Nanotehcnology Engineering Program, Zewail City of Science and Technology, Giza, Egypt. M. Hameed is also with Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt Salah Obayya is Professor of Photonics and Director of the Center for Photonics and Smart Materials at the Zewail City of Science and Technology, Giza, Egypt. S. Obayya is also with Electronics and Communication Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Acknowledgement 5
Contents 6
Fundamentals 8
1 Introduction to Optical Waveguides 9
Abstract 9
1.1 Introduction—Historical Review 10
1.2 Optical Waveguides Structures 11
1.3 Analysis of Planner Waveguides 14
1.3.1 Ray-Optical Approach 14
1.3.2 TE and TM Field Distribution—Maxwell’s Equations Approach 18
1.3.3 Dispersion Curves 22
1.3.4 Effective Thickness 24
1.4 Numerical Methods 25
1.4.1 Finite Element Technique (FEM) [25–27] 25
1.4.2 Plane Wave Expansion (PWE) Method [28] 26
1.4.3 Transfer Matrix Method (TMM) [29] 26
1.4.4 Beam Propagation Method BPM [30] 26
1.5 Coupling Techniques 27
1.5.1 The Transversal Coupling Techniques 27
1.5.1.1 End Coupling 27
1.5.1.2 Taper Coupling 28
1.5.2 The Longitudinal Coupling Techniques 29
1.5.2.1 Prism Coupling 29
1.5.2.2 Grating Coupler 30
References 31
2 Fundamentals of Photonic Crystals 34
Abstract 34
2.1 Introduction 35
2.2 One-Dimensional Photonic Crystals—Bloch’s Theorem 36
2.2.1 Maxwell’s Equations in Periodic Media—Bloch–Floquet Theorem 36
2.2.2 Bandgap Size 39
2.2.3 The Relation Between the Brillouin Zone and the Reciprocal Lattice 40
2.3 Two-Dimensional Photonic Crystals 42
2.4 Three-Dimensional Photonic Crystals 46
2.5 Defects in Photonic Crystals 47
2.5.1 Photonic Crystal Fibers 49
2.5.2 Photonic Crystal Planar Waveguides 51
2.5.3 Optical Logic Circuits 52
2.5.4 Optical Transistors 53
2.5.5 Photonic Crystal Polarization Handling Devices 53
2.5.6 Photonic Crystal Biosensors 54
References 54
3 Basic Principles of Surface Plasmon Resonance 58
Abstract 58
3.1 Introduction 58
3.1.1 Propagating Surface Plasmons (PSPs) 59
3.1.2 Localized Surface Plasmons (LSPs) 59
3.2 Single-Interface Surface Plasmon Waveguide (SPWG) 60
3.3 Thin Metallic Film Surface Plasmon Waveguide 64
3.4 Metal–Insulator–Metal (MIM) Surface Plasmon Waveguide 72
3.5 Other Types of Surface Plasmon Waveguide 72
3.6 Summary 75
References 76
4 Introduction to Silicon Photonics 78
Abstract 78
4.1 Silicon on Insulator (SOI): Introduction 79
4.2 Optical Waveguide Development 80
4.3 Slot Waveguide Based on Silicon on Insulator 82
4.4 Recent Technologies in Photonic Platforms 85
4.4.1 Silicon on Sapphire (SOS) 86
4.4.2 Silicon on Nitride (SON) 86
4.4.3 Silicon on Calcium Fluoride 87
4.5 Fabrication Methods 87
4.5.1 Separation by IMplantation of OXygen (SIMOX) Technology 87
4.5.2 Bonded Silicon on Insulator (BSOI) and Bond and Etch-Back Silicon on Insulator (BESOI) Processes 88
4.5.3 Eltran® Process 88
4.5.4 Smart Cut™ Technology 90
References 91
5 Basic Principles of Biosensing 96
Abstract 96
5.1 Introduction 97
5.2 Classifications of the Optical Sensors 98
5.2.1 Classification Based on the Working Principle 99
5.2.1.1 Intensity-Modulated Optical Sensors 99
5.2.1.2 Phase-Modulated Optical Sensors 100
5.2.1.3 Wavelength-Modulated (Spectrometric) Optical Sensors 100
5.2.1.4 Polarization-Modulated (Polarimetric) Optical Sensors 101
5.2.2 Classification Based on the Sensor’s Configuration 102
5.2.2.1 Surface Plasmon Resonance 102
5.2.2.2 Interferometric Optical Sensors 104
5.2.2.3 Ring Resonator Optical Sensors 106
5.2.2.4 Photonic Crystal Optical Sensors 107
5.3 Summary 107
References 108
Computational Modelling Techniques 111
6 Finite Element Method for Sensing Applications 112
Abstract 112
6.1 Introduction 113
6.2 Finite Element Method Overview 114
6.2.1 Finite Element Procedure 114
6.2.2 Computational Domain Discretization 114
6.2.3 Setup Element Interpolation 115
6.3 Scalar Finite Element Method for Mode Analysis 120
6.3.1 Galerkin Method 120
6.3.2 Stiffness and Mass Matrices 124
6.3.3 Assessment 128
6.3.4 Perfectly Matched Layer 129
6.3.5 Variations of the Conventional FEM 131
6.3.6 Time Domain Methods 132
6.4 Finite Element Time Domain 132
6.4.1 Time Domain Wave Equation 133
6.4.2 Beam Propagation Technique 134
6.4.2.1 Newmark-Beta Technique 135
6.4.2.2 Crank–Nicolson Technique 136
6.4.2.3 Padé Approximation 136
6.4.3 Assessment 138
6.4.3.1 Single Mode Slab Waveguide (Perfectly Matched Layer Assessment) 138
6.4.3.2 Optical Grating Sensor 140
6.5 Full Vectorial Finite Element 142
6.5.1 The Penalty Function Method 142
6.5.2 Vector Finite Element 143
6.5.2.1 Full Vectorial Equation 144
6.5.2.2 Application 148
6.6 Summary 151
References 152
7 FDTD in Cartesian and Spherical Grids 155
Abstract 155
7.1 Cartesian FDTD 156
7.2 Spherical FDTD Update Equations 160
7.3 Spherical FDTD Numerical Dispersion Relation 166
7.4 Numerical Dispersion Analysis 170
7.5 Absorbing Boundary Conditions 172
7.5.1 Perfectly Matched Layer ABC 172
7.5.2 Distortion-Less Absorbing Shell ABC 174
7.5.3 ABC Simulation Comparison 174
7.6 Conclusion 176
References 176
Photonic Crystal Fiber Sensors 178
8 Temperature Sensors Based on Plasmonic Photonic Crystal Fiber 179
Abstract 179
8.1 Introduction 180
8.2 Alcohol-Based SPR PCF Temperature Sensor 181
8.2.1 Design Considerations 181
8.2.2 Numerical Results and Discussion 182
8.3 NLC SPR PCF Temperature Sensor 191
8.3.1 Design Considerations 191
8.3.2 Numerical Results and Discussion 193
8.4 Summary 199
References 200
9 Microstructured Optical Fiber-Based Plasmonic Sensors 202
Abstract 202
9.1 Introduction 203
9.2 Fundamentals of Surface Plasmon Resonance 205
9.3 Optical Properties of Plasmonic Materials 206
9.4 Fiber Optic-Based Plasmonic Sensors 207
9.5 Photonic Crystal Fiber-Based Plasmonic Sensors 209
9.5.1 Internally Metal-Coated PCF SPR Sensors 209
9.5.2 Externally Metal-Coated PCF SPR Sensors 213
9.5.2.1 Slotted PCF SPR Sensors 213
9.5.2.2 D-Shaped PCF SPR Sensors 216
9.5.2.3 Improved External Approach of PCF SPR Sensors 219
9.6 Future Directions 223
9.7 Conclusions 224
References 225
10 Multifunctional Plasmonic Photonic Crystal Fiber Biosensors 232
Abstract 232
10.1 Introduction 233
10.2 NLC-SPR PCF Sensor 235
10.2.1 Design Considerations 235
10.2.2 Numerical Results and Discussion 237
10.3 Alcohol-Based SPR-PCF Multifunction Sensor 247
10.3.1 Design Considerations 247
10.3.2 Numerical Results and Discussion 248
10.4 Summary 257
References 258
11 Photonic Crystal Fiber Pressure Sensors 260
Abstract 260
11.1 Introduction 261
11.2 Photonic Crystal Fibers 263
11.3 Types and Principles of Photonic Crystal Fiber-Based Pressure Sensors 266
11.3.1 Grating-Based Photonic Crystal Fiber Pressure Sensors 268
11.3.2 Sagnac Interferometer-Based Pressure Sensors 270
11.3.3 Fabry–Pérot Interferometer-Based Pressure Sensors 273
11.3.4 Mach–Zehnder Interferometer-Based Pressure Sensors 274
11.4 Photonic Crystal Fiber Pressure Sensor Characteristics 276
11.4.1 Sensitivity and Resolution 276
11.4.2 Dynamic Range 278
11.5 Photonic Crystal Fiber-Based Pressure Sensor Applications 279
11.6 Summary 280
Acknowledgements 281
References 281
12 Development of Photonic Crystal Fiber-Based Gas/Chemical Sensors 285
Abstract 285
12.1 Introduction 286
12.2 Fundamentals of PCF-Based Sensors 289
12.2.1 Sensing Mechanism of PCF-Based Sensors 289
12.2.2 Applications of PCF-Based Sensors 292
12.2.3 Advantages of PCF-Based Sensors 293
12.2.4 Optical/Guiding Properties of PCF Sensors 293
12.3 Overview of PCF-Based Gas/Chemical Sensors 296
12.3.1 Conventional Optical Fiber Sensors 296
12.3.2 PCF-Based Sensors 297
12.4 Guiding Properties Controlling Parameters of PCFs 298
12.4.1 Pitch Effects on Sensing 298
12.4.2 Diameter Effects on Sensing 299
12.4.3 Air Filling Ratio Effects on Sensing 299
12.5 Core-Shaped Effects on Sensing 301
12.5.1 Hollow-Core PCF-Based Sensors 301
12.5.2 Slotted-Core PCF-Based Sensors 303
12.5.3 Microstructured Core PCF-Based Sensors 304
12.6 Cladding Effects on Sensing 306
12.7 Perfectly Matched Layer (PML) Effects on Sensing 309
12.8 Fiber Background Material Effects on Sensing 309
12.9 Future Directions and Conclusions 309
References 311
Silicon-on-Insulator Sensors 316
13 Silicon Nanowires for DNA Sensing 317
Abstract 317
13.1 Introduction 318
13.2 Design Considerations 320
13.3 Simulation Results 322
13.3.1 HPSW with Gold as a Plasmonic Material 322
13.3.2 HPSW with TiN as an Alternative Plasmonic Material 330
13.4 Summary 336
References 337
14 Compact Photonic SOI Sensors 339
Abstract 339
14.1 Introduction 339
14.2 Integrated Slot Waveguide for Sensing 341
14.3 Detection of DNA Hybridization by Vertical and Horizontal Slot Waveguide 345
14.3.1 Vertical Slot Waveguide 346
14.3.2 Horizontal Slot Waveguide 350
14.4 Cross-Slotted Bio-chemical Sensor 354
14.5 Straight Vertical Slotted Resonator 358
14.5.1 Surface Sensing 360
14.5.2 Bulk Sensing 362
14.6 Plasmonic Gas Sensing by Al+3 Doped ZnO Coated Au Nanowire 364
14.7 Ethanol Vapor Sensor by Composite Plasmonic Waveguide 368
14.8 Conclusions 376
References 376
15 Silicon Ring Resonator-Based Biochips 380
15.1 Introduction 380
15.2 Sensing with Microring Resonators 381
15.2.1 Photonic Waveguides 381
15.2.2 Microring Resonators 382
15.2.3 Evanescent Field Sensing with Ring Resonators 385
15.2.4 Applications of Microring Resonators for Label-Free Biosensing 386
15.3 Resonance Splitting in Microring Biosensors 387
15.3.1 Introduction 387
15.3.2 Origin of Resonance Splitting 388
15.3.3 Integrated Interferometric Circuit 389
15.3.4 Controlling Microring Resonance Splitting 391
15.4 Vernier-Cascade Sensor 392
15.4.1 Theoretical Analysis of the Vernier-Cascade Sensor 392
15.4.2 Design and Fabrication 397
15.4.3 Experimental Performance 397
15.4.4 Vernier-Cascade Sensor with On-chip Spectrometer 400
15.5 Dual-Polarization Biosensing 403
15.5.1 Introduction 404
15.5.2 Working Principle 404
15.5.3 Influence of Noise on Measurement Accuracy 406
15.5.4 Sensor Design 407
15.5.5 Proof-of-Concept: BSA Experiment 408
15.6 Conclusion 411
References 412
16 SOI Waveguide-Based Biochemical Sensors 417
Abstract 417
16.1 Introduction 417
16.2 SOI-Based Optical Sensing 418
16.2.1 Historical Sensing Approaches 419
16.2.2 Development, Materials, and Sensor Configurations 420
16.3 WG-Based Sensing 425
16.3.1 Bulk Sensing 425
16.3.2 Surface Sensing 426
16.4 Mode Multiplex WG Sensing 426
16.5 Micro-ring Resonator-Based Sensing and Performance Criteria 428
16.5.1 Materials and Configurations of Micro-ring Resonators 433
16.5.2 Overview of MRR Sensors 434
16.5.3 Micro-ring Resonator-Based Corrosion Sensing 436
16.6 Present and Future Perspectives 438
16.7 Conclusions 439
Contributions 439
References 439
Index 443

Erscheint lt. Verlag 13.6.2018
Zusatzinfo VIII, 452 p. 273 illus., 219 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik
Schlagworte biosensors • Chemical sensors • DNA sequence sensors • Finite element frequency domain method • Finite element time domain method • Pressure sensors • Refractive index sensors • Silicon on insulator (SOI) sensors • Surface Plasmon • temperature sensors
ISBN-10 3-319-76556-6 / 3319765566
ISBN-13 978-3-319-76556-3 / 9783319765563
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 21,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich