Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces (eBook)

From Liquid Optics to Electrocatalysis

(Autor)

eBook Download: PDF
2018 | 1st ed. 2018
XX, 258 Seiten
Springer International Publishing (Verlag)
978-3-319-77914-0 (ISBN)

Lese- und Medienproben

Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces - Evgeny Smirnov
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, Chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field. 

Supervisor’s Foreword 6
Parts of this thesis have been published in the following journal articles: 8
Acknowledgements 9
Contents 10
Abbreviations 15
Symbols 17
1 Introduction 19
1.1 Liquid–Liquid Interfaces: Structure and Galvani Potential Difference 19
1.1.1 Structure of Liquid–Liquid Interfaces 19
1.1.2 Thermodynamics of Electron and Ion Transfer Reactions Across ITIES. BATB Assumption 20
1.2 Equilibration of the Fermi Levels 24
1.2.1 Equilibration of Fermi Level Between NPs and Species in Solution 25
1.2.2 Electron Transfer at a Liquid–Liquid Interface (LLI) 34
1.3 Gold Nanoparticles: Synthesis and Properties 36
1.3.1 Short Review on AuNPs Synthesis 36
1.3.2 Synthetic Details and Structure of Citrate-Stabilized AuNPs 37
1.3.3 “Free Electrons Gas” Model and Optical Properties of Metal Nanoparticles 39
1.4 Self-assembly of Nano- and Microparticles at Liquid Interfaces 46
1.4.1 Theoretical Clues on Interaction Between a Single Particle and a Liquid–Liquid Interface 46
1.4.2 Wetting Properties: Nano Versus Macro 55
1.4.3 Review on Practical Methods to Settle Particles at Liquid–Liquid or Liquid–Air Interfaces 55
1.4.4 Potential Applications of Nanoparticles Assemblies at LLI 58
Appendixes 62
Appendix I. Mathematica Code to Calculate the Fermi Level of Nanoparticles 62
Appendix II. Mathematica Code to Implement Mie Theory 64
Appendix III. Flatte’s Model Without an External Electric Field 67
Appendix IV. DLVO Theory: Forces Between Nanoparticles in Assemblies at LLI 69
References 70
2 Experimental and Instrumentation 82
2.1 Reagents 82
2.2 Instrumental Methods 83
2.2.1 Electron Microscopy (SEM and TEM) 83
2.2.2 Dynamic Light Scattering (DLS) and Zeta(?)-Potential Measurements 83
2.2.3 UV–Vis Spectroscopy 84
2.2.4 X-Ray Photoluminescence Spectroscopy 87
2.2.5 Interfacial Raman Microscopy 87
2.2.6 Electrochemical Measurements 87
2.2.7 Drop Shape Analysis 89
2.3 Synthesis of Aqueous Colloidal AuNP Solution 90
2.3.1 Turkevich–Frens Method 90
2.3.2 Seed-Mediated Growth 90
2.4 AuNP Size Distributions and Concentrations 91
2.4.1 Theoretical Aspects 91
2.4.2 Practical Aspects 92
2.5 Gold Metal Liquid-Like Droplets (MeLLDs): Preparation and Surface Coverage Evaluation 94
2.5.1 MeLLDs Preparation Procedure 94
2.5.2 The Droplet Surface Area and Estimation of the Surface Coverage 96
2.6 Modifying a Soft Interface with a Flat AuNP Nanofilm Inside a Four-Electrode Electrochemical Cell 98
2.7 “Shake-Flask” Experiments to Quantify Biphasic H2O2 Generation 99
Appendixes 100
Sec22 100
References 101
3 Self-Assembly of Nanoparticles into Gold Metal Liquid-like Droplets (MeLLDs) 103
3.1 Introduction 103
3.2 Results and Discussion 106
3.2.1 Optical Characterization of Gold MeLLDs 106
3.2.2 Investigating the Conductivity of Gold MeLLDs 112
3.2.3 Gold MeLLD Formation Mechanism 114
3.2.4 To the Question of Wetting Properties 123
3.2.5 Self-healing Nature and Mechanical Properties 125
3.3 Conclusions 128
References 129
4 Optical Properties of Self-healing Gold Nanoparticles Mirrors and Filters at Liquid–Liquid Interfaces 134
4.1 Introduction 134
4.2 Results and Discussion 136
4.2.1 Probing the Interfacial Gold Nanofilms by Extinction and Reflection Spectra: Experimental Remarks 136
4.2.2 Influence of AuNP Mean Diameter and Interfacial AuNP Surface Coverage ( /theta_{{/rm int}}^{{/rm AuNP}} ) on the Extinction and Reflectance Spectra Obtained for Interfacial Gold Nanofilms Prepared at Water–DCE Interfaces 136
4.2.3 Monitoring the Morphology of the Interfacial Gold Nanofilms with Increasing /theta_{{/rm int}}^{{/rm AuNP}} by Scanning Electron Microscopy (SEM) 142
4.2.4 Determining the Separation Distances Between AuNPs in the Interfacial Gold Nanofilms by High-Resolution Transmission Electron Microscopy (HR-TEM) 144
4.2.5 Comparing the Optical Responses of Interfacial Gold Nanofilms Formed Biphasically Using Alternative Organic Solvents of Low Miscibility with Water and Replacing the Lipophilic Molecule TTF in the Organic Droplet with Neocuproine (NCP) 146
4.3 Conclusions 153
References 154
5 Self-Assembly of Gold Nanoparticles: Low Interfacial Tensions 159
5.1 Introduction 159
5.2 Results and Discussion 159
5.2.1 Experimental Evidences 160
5.2.2 Thermodynamic Modeling 164
5.3 Conclusions 167
References 168
6 Electrochemical Investigation of Nanofilms at Liquid–Liquid Interface 170
6.1 Introduction 170
6.2 Results and Discussion 171
6.2.1 Insights into Functionalization of Soft Interfaces with Mirror-like AuNP Nanofilms 171
6.2.2 Ion-Transfer Voltammetry Characterization of AuNP Nanofilm Functionalized Soft Interfaces 174
6.2.3 Charging of Gold Nanofilm by an Electron Donor in the Organic Phase 179
6.3 Conclusions 183
References 184
7 Electron Transfer Reactions and Redox Catalysis on Gold Nanofilms at Soft Interfaces 186
7.1 Introduction 186
7.2 Theoretical Aspects and Simulation Models 188
7.2.1 Possible Mechanism of Electron Transfer Reactions at ITIES 188
7.2.2 HET and ET-IT Mechanisms at Soft Interfaces 189
7.2.3 EC Mechanism at Soft Interface 192
7.2.4 Description of Simulation Models 192
7.3 Results and Discussion 196
7.3.1 Cell Compositions and Determination of Redox Couples Potentials 196
7.3.2 The Difference Between ET-IT and HET Mechanisms 197
7.3.3 Interfacial Redox Catalysis at a Polarized AuNP Nanofilm Functionalized Soft Interface 202
7.4 Conclusions 207
References 208
8 Gold Nanofilm Redox Electrocatalysis for Oxygen Reduction at Soft Interfaces 211
8.1 Introduction 211
8.2 Theoretical Aspects 212
8.2.1 Standard Redox Potentials of Oxygen Reduction in Trifluorotoluene (TFT) 212
8.2.2 Interfacial O2 Reduction by the Ion Transfer—Electron Transfer Mechanism 214
8.2.3 Interfacial Redox Electrocatalysis 215
8.2.4 Calculations of the Fermi Level of the Gold Nanofilm 217
8.3 Results and Discussion 219
8.3.1 Cell Compositions 219
8.3.2 Insights into the Mechanism of Interfacial O2 Reduction on AuNP Nanofilm at ITIES in the Presence of DMFc 220
8.3.3 Comparison of Cyclic Voltammograms Obtained at ITIES and Physically Separated Oil–Water Phases Connected by Gold Electrodes 222
8.3.4 Effect of pH on Interfacial O2 Reduction on AuNP Nanofilm at ITIES in the Presence of DMFc 224
8.3.5 Quantification of H2O2 Formation by the Interfacial O2 Reduction Under Neutral Conditions on AuNP Nanofilm at ITIES in the Presence of DMFc 225
8.3.6 Mechanism of Interfacial O2 Reduction by Interfacial Redox Electrocatalysis Under Neutral Conditions on AuNP Nanofilm at ITIES 225
8.4 Conclusions 229
References 230
9 Perspectives: From Colloidosomes Through SERS to Electrically Driven Marangoni Shutters 233
9.1 Microencapsulation: Raspberry-like Colloidosomes 233
9.1.1 Raspberry-like Colloidosomes Formation 234
9.1.2 Arrangement of Gold Nanoparticles on the Surface of Colloidosomes 236
9.1.3 Optical Properties of Raspberry-like Colloidosomes 237
9.2 From Liquid–Liquid Toward Liquid–Air Interfaces 241
9.3 Gold Nanoparticles Structures for SERS and Electrochemical SERS 244
9.3.1 Planar Structure on a Solid Substrate (2D) 244
9.3.2 Wrinkled Surfaces Covered by Gold Nanoparticles (Folded 2D) 244
9.3.3 Gold Nanoparticle Sponge (3D) 247
9.3.4 Reusable Substrates and Electrochemical SERS 248
9.4 How to Measure the Conductivity at the Microscale? 250
9.5 Thermal Properties of Self-assembled Gold Nanoparticles: Self-terminated Welding 255
9.6 Electrovariable Plasmonics 257
9.6.1 Arms Setup to Study Angular Dependence of the Reflectance 257
9.6.2 Simulations for the Current Distribution 258
9.6.3 Rectangular Four-Electrode Electrochemical Cell 259
9.6.4 Marangoni-Type Shutters Instead of Mirrors 259
References 265
General Conclusions 269

Erscheint lt. Verlag 19.4.2018
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XX, 258 p. 122 illus., 112 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Fermi level equilibration concept • gold metal liquid like droplets • Interfacial redox electrocatalysis • liquid filters • liquid mirrors • Self-Assembly
ISBN-10 3-319-77914-1 / 3319779141
ISBN-13 978-3-319-77914-0 / 9783319779140
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich