Classical Mirror Symmetry (eBook)
VIII, 140 Seiten
Springer Singapore (Verlag)
978-981-13-0056-1 (ISBN)
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov-Witten invariants of a Calabi-Yau threefold by using the Picard-Fuchs differential equation of period integrals of its mirror Calabi-Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.On the B-model side, the process of construction of a pair of mirror Calabi-Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard-Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.
1. Brief Introduction of Mirror Symmetry.- 2. Topological Sigma Models (A-Model and B-Model).- 3. Basics of Geometry of Complex Manifolds.- 4. Detailed Computation of B-Model Prediction.- 5. Moduli space of Holomorphic Maps from CP^1 to CP^{N-1}.- 6. Localization Computation.- 7. Brief Outline of Direct Proof of Mirror Theorem.
Erscheint lt. Verlag | 18.4.2018 |
---|---|
Reihe/Serie | SpringerBriefs in Mathematical Physics |
SpringerBriefs in Mathematical Physics | SpringerBriefs in Physics |
Zusatzinfo | VIII, 140 p. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Hochenergiephysik / Teilchenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Bott Residue Formula • Gromov-Witten invariants • mirror symmetry • Projective Hypersurface • Topological Sigma Model |
ISBN-10 | 981-13-0056-9 / 9811300569 |
ISBN-13 | 978-981-13-0056-1 / 9789811300561 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 1,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.