Monotonic, Cyclic and Postcyclic Shear Behavior of Low-plasticity Silt -  Shuying Wang

Monotonic, Cyclic and Postcyclic Shear Behavior of Low-plasticity Silt (eBook)

(Autor)

eBook Download: PDF
2018 | 1st ed. 2018
XIII, 156 Seiten
Springer Singapore (Verlag)
978-981-10-7083-9 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book gathers the main research findings on monotonic, cyclic and postcyclic shear behavior of low-plasticity. Drawing on the low-plasticity silt from the Mississippi River Valley, it determines that the silt's critical state line can be changed due to liquefaction, and thus offers valuable insights and reference data for further investigations on soil mechanics and engineering applications to verify the above research findings.

Low-plasticity silt with a plasticity index of less than 10, though commonly found around the world, nonetheless differs greatly from sand and clay in terms of its shear behavior. Failure to take into account the differences in shear characteristics between silt, clay and sand will lead to overconservative designs of offshore structures. In particular, dynamic loading from earthquakes, trains and ocean waves can set off the liquefaction of low-plasticity silt, and with it, major disasters and losses of properties. Additionally, some civil infrastructures have failed not only due to cyclic loading during an earthquake, but also due to reduction of shear strength or stiffness after that. 



Dr. Shuying Wang is an associate professor in the School of Civil Engineering at Central South University, China. He respectively obtained his B.E. and M.S. degrees there in 2005 and 2007 and then continued the graduate study and earned his Ph.D. degree in Missouri University of Science and Technology (Rolla, USA) in 2011. His research work focuses on mechanics of special soils and its application in tunnel engineering. He has got over twenty technical papers published in prestigious journals. Dr. Wang serves as an editorial board member for Journal of Testing and Evaluation (ASTM) and a reviewer for several journals.


This book gathers the main research findings on monotonic, cyclic and postcyclic shear behavior of low-plasticity. Drawing on the low-plasticity silt from the Mississippi River Valley, it determines that the silt's critical state line can be changed due to liquefaction, and thus offers valuable insights and reference data for further investigations on soil mechanics and engineering applications to verify the above research findings. Low-plasticity silt with a plasticity index of less than 10, though commonly found around the world, nonetheless differs greatly from sand and clay in terms of its shear behavior. Failure to take into account the differences in shear characteristics between silt, clay and sand will lead to overconservative designs of offshore structures. In particular, dynamic loading from earthquakes, trains and ocean waves can set off the liquefaction of low-plasticity silt, and with it, major disasters and losses of properties. Additionally, some civil infrastructures have failed not only due to cyclic loading during an earthquake, but also due to reduction of shear strength or stiffness after that.

Dr. Shuying Wang is an associate professor in the School of Civil Engineering at Central South University, China. He respectively obtained his B.E. and M.S. degrees there in 2005 and 2007 and then continued the graduate study and earned his Ph.D. degree in Missouri University of Science and Technology (Rolla, USA) in 2011. His research work focuses on mechanics of special soils and its application in tunnel engineering. He has got over twenty technical papers published in prestigious journals. Dr. Wang serves as an editorial board member for Journal of Testing and Evaluation (ASTM) and a reviewer for several journals.

Introduction.- Preparation Approach of Low-plasticity Silt Specimens for Triaxial Testing.- Monotonic Shear Behavior of Low-plasticity Silt and Its Change with Soil Plasticity.- Liquefaction Characteristics of Low-plasticity Fine-grained Soil.- Postcyclic Compressibility of Low-plasticity Silt.- Postcyclic Shear Behavior of Low-plasticity Silt.- Effect of Cyclic Loading Magnitude on Shear Behavior of Low-plasticity Silt.- Reliquefaction Characteristics of Low-plasticity Silt.

Erscheint lt. Verlag 24.1.2018
Zusatzinfo XIII, 156 p. 91 illus., 80 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Technik Bauwesen
Schlagworte Critical state line of silt • Cyclic Loading • Liquefaction of low-plasticity silt • Mississippi River Valley silt • Monotonic Shear Behavior
ISBN-10 981-10-7083-0 / 9811070830
ISBN-13 978-981-10-7083-9 / 9789811070839
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Aufbau der Erde, Erdgeschichte und Geologie Deutschlands

von Alecia M. Spooner

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
22,99