Recycling of Lithium-Ion Batteries (eBook)

The LithoRec Way

Arno Kwade, Jan Diekmann (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
XXXIII, 288 Seiten
Springer International Publishing (Verlag)
978-3-319-70572-9 (ISBN)

Lese- und Medienproben

Recycling of Lithium-Ion Batteries -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these.
The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.

Series Editors’ Foreword 6
Preface 8
Contents 10
List of Figures 16
List of Tables 30
1 Background 33
Abstract 33
1.1 Introduction 33
1.2 Introduction into Lithium-Ion Batteries 37
1.2.1 Liquid Nonaqueous Electrolytes 37
1.2.2 Negative Electrodes in Rechargeable Lithium Batteries 38
1.2.3 Positive Electrodes 40
1.3 Industrial Production of Lithium-Ion Cells and Modules 42
1.3.1 Cell Design 42
1.3.2 Electrode Fabrication 45
1.3.3 Cylindrical Cell Fabrication 47
1.3.4 Prismatic and Pouch Cell Fabrication 50
1.3.5 Cell Formation 51
1.3.6 Battery System Manufacturing 53
1.4 Recycling of Lithium-Ion Batteries 53
1.4.1 Introduction 53
1.4.2 Overview of Selected Lithium-Ion Battery Recycling Technologies 55
References 60
2 The LithoRec Process 64
Abstract 64
2.1 Objectives and Results of LithoRec 64
2.2 Objectives and Project Progression of LithoRec II 65
2.3 The LithoRec Process Chain 66
References 69
3 Potential Dangers During the Handling of Lithium-Ion Batteries 70
Abstract 70
3.1 Hazard Potential of Lithium-Ion Batteries 70
3.1.1 Electrical Hazard 71
3.1.2 Fire- and Explosion Hazard 71
3.1.3 Chemical Hazard 72
3.2 Interaction of Hazards 75
3.3 Conclusion 80
References 81
4 Overdischarging Lithium-Ion Batteries 83
Abstract 83
4.1 Introduction 83
4.1.1 Overdischarging Batteries in the Literature 83
4.1.2 Motivation for Studying Overdischarging in LithoRec 84
4.1.3 Individual Process Steps of Overdischarging in LithoRec Recycling 84
4.1.4 Focus of the Research 86
4.2 The Basics of Overdischarging Lithium-Ion Batteries 86
4.2.1 Definition of Overdischarging 86
4.2.2 Electrochemical Basis 86
4.2.3 Electrical Basis of Overdischarging 88
4.2.4 Criteria for Description and Selection of Overdischarging Processes 88
4.3 Investigated Batteries and Devices for Overdischarging 89
4.3.1 Battery Cells, Modules, and Systems Tested 89
4.3.2 Applied Devices and Measuring Setup for Overdischarging 92
4.3.3 Experimental Setup and Research Questions 96
4.4 Results and Discussion 97
4.4.1 Investigations Related to the Functional Behavior and Applicability of the Discharger 97
4.4.2 Investigation of Battery Behavior in Cases of Overdischarging, Pole Reversal, Short Circuit and Voltage Relaxation 104
4.5 Summary and Outlook 110
References 111
5 Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries 112
Abstract 112
5.1 Introduction 112
5.2 State of the Art on Planning of Disassembly Systems 113
5.3 Disassembly System for Li-Ion Traction Batteries: Experimental Analysis, Planning and Assessment of Automation Potentials 116
5.3.1 Product Analysis 117
5.3.2 Determination of Disassembly Sequences 120
5.3.3 Assessment of Automation Potentials and Concepts for Automated Disassembly 123
5.3.4 Classification of Disassembly Sequences 124
5.4 Summary 125
References 125
6 Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries 127
Abstract 127
6.1 Introduction 127
6.2 Background 129
6.2.1 Technologies and Applications for Safe Human Robot Collaboration 129
6.2.2 Technologies for Automated Disassembly 130
6.3 Requirements for the Development of Human Robot-Collaboration Systems 131
6.3.1 Robot Acceptance 132
6.3.2 Safety Requirements and Risk Assessment 132
6.3.3 Economic Efficiency 134
6.3.4 Control Architecture and Interoperability 135
6.4 Human Robot Collaboration for Disassembly of Lithium-Ion Battery Systems 136
6.4.1 Disassembly Steps and Requirements for Human Robot Collaboration 136
6.4.2 Layout Concept 137
6.4.3 Tool Development 140
6.4.4 Sensor Technology and Control Algorithms 140
6.4.5 Intuitive Human-Machine Interfaces 141
6.5 Results and Discussion 146
6.5.1 Robot Based Unscrewing 146
6.5.2 Gesture Control 148
6.5.3 Object Recognition and Localization 149
6.5.4 Demonstrator 150
6.6 Conclusion and Outlook 151
References 152
7 Crushing of Battery Modules and Cells 155
Abstract 155
7.1 Purpose of Crushing and Basic Technologies 155
7.2 Input Material 156
7.3 Requirements on Safe Crushing 157
7.3.1 Hazards Generated by Chemical Reactions 158
7.3.2 Gas Release During Crushing 160
7.3.3 Influence of Different Crushing Mechanisms 161
7.4 Design of a Crusher for Lithium-Ion Battery Modules 164
References 165
8 Separation of the Electrolyte—Thermal Drying 167
Abstract 167
8.1 Introduction 167
8.2 Flow Sheet Simulation of the Drying Process 169
8.2.1 Setup of the Simulation 169
8.2.2 Sensitivity Study of Parameters Related to the Drying Process 169
8.3 Experimental Investigation on Thermal Drying of Battery Fragments 173
8.3.1 Small Scale Experiments 173
8.3.2 Pilot Scale 175
8.4 Conclusions 179
8.4.1 Transferability of Simulation Results on Experiments 179
8.4.2 Recommendations for the Design of a Drying Process 180
8.4.3 Further Research Needs and Outlook 180
References 181
9 Separation of the Electrolyte—Solvent Extraction 182
Abstract 182
9.1 Introduction 182
9.2 Basics for the Extraction of Electrolyte Compounds 183
9.2.1 Battery Material and Electrolyte Composition 183
9.2.2 Experimental Setup 184
9.3 Experimental Progress and Transfer to Process Design 186
9.3.1 Single-Stage Extractions 186
9.3.2 Multi-Stage Extractions 191
9.3.3 Single-Stage Extractions with Water 193
9.3.4 Multi-Stage Extractions with DMC and Water 195
9.3.5 Degradation of Fluoride-Containing Compounds 198
9.3.6 Extraction of Organic Carbonates 198
9.3.7 Modelling of the Multi-Stage Extractions with DMC 199
9.3.8 Number of Necessary Extractions Stages and Specific Solvent Demand 200
9.4 Conclusions 201
9.4.1 Summary 201
9.4.2 Remarks for the Design of an Extraction Plant 202
9.4.3 Further Research Needs and Outlook 202
References 203
10 Electrolyte Extraction—Sub and Supercritical CO2 204
Abstract 204
10.1 Introduction 204
10.2 Static Electrolyte Extraction by Supercritical CO2 205
10.3 Dynamic Electrolyte Extraction by Sub- and Supercritical CO2 206
10.4 Supporting Electrolyte Extraction Additives 208
10.5 Analysis of the Extracted Electrolytes 210
10.6 Conclusion 212
References 212
11 Off Gas Cleaning by Adsorption 213
Abstract 213
11.1 Introduction 213
11.2 Experimental Procedure 214
11.2.1 Materials 214
11.2.2 Preparation of Batch Samples 215
11.2.3 Fixed Bed Experiments 215
11.3 Calculation Methods 216
11.3.1 Single Component Isotherms 216
11.3.2 Multi-component Isotherms 217
11.3.3 Breakthrough Time 218
11.3.4 Decomposition 219
11.4 Adsorption Equilibria of Electrolyte Components on Activated Carbon 219
11.4.1 Single-Component Adsorption Equilibria of DMC, EMC, Methanol and Ethanol 220
11.4.2 Two Component Equilibria 221
11.4.3 Off Gas Cleaning with Fixed Bed Adsorption 224
11.5 Decomposition of Electrolyte Components on Activated Carbon 226
11.5.1 Main Influences on Decomposition 226
11.5.2 Decomposition During Fixed Bed Adsorption 227
11.6 Conclusions 229
11.6.1 Recommendations for Designing the Adsorption Process 230
11.6.2 Further Research Needs and Outlook 231
References 231
12 Material Separation 233
Abstract 233
12.1 Introduction 233
12.2 Characterization of the Input Material 234
12.3 Recovery of the Heavy Parts (1st Air-Classification) 236
12.4 Recovery of the Coating Materials and Process Influences 236
12.5 Separation of Current Collector Foils and Separator (2nd Air–Classification) 239
12.6 Products of the Separation Processes 240
12.7 Separation of Cu and Al Foil 241
12.8 Conclusion 242
References 243
13 Hydrometallurgical Processing and Thermal Treatment of Active Materials 244
Abstract 244
13.1 Recycling of the Cathode Material 244
13.2 Recycling of the Anode Material 253
13.2.1 Analytical Characterization of Recycled Graphite 255
References 270
14 Realization in a Demonstration Plant 272
Abstract 272
14.1 Design of the Demonstration Plant 272
14.1.1 Discharge 273
14.1.2 Disassembly 273
14.1.3 Crushing 274
14.1.4 Separation of the Electrolyte 274
14.1.5 Material Separation 274
14.1.6 Sieving 274
14.2 Operating Cycle 275
14.3 Safety Concept 275
15 Economic Assessment of the LithoRec Process 277
Abstract 277
15.1 Introduction 277
15.2 Drivers of Economic Performance 278
15.3 Optimization Model for Technology and Capacity Planning 279
15.4 Data and Scenarios for Model-Based Analysis 281
15.5 Results from Model Application 285
15.6 Managerial Implications and Conclusions 289
References 290
16 Environmental Aspects of the Recycling of Lithium-Ion Traction Batteries 291
Abstract 291
16.1 Introduction 291
16.2 Environmental Relevance of the Recycling of Traction Batteries 292
16.2.1 Recycling Avoids the Impact Caused by Non-material-Recovery End-of-Life Activities 293
16.2.2 Recycling Avoids the Impact of Producing Virgin Material 294
16.2.3 The Impact of Recycling Activities 296
16.3 Environmental Characterization of the LithoRec Process 301
16.3.1 Energy and Material Flow Modeling 301
16.3.2 Environmental Assessment of the LithoRec Process 306
16.4 Discussion and Conclusions 309
References 310

Erscheint lt. Verlag 12.12.2017
Reihe/Serie Sustainable Production, Life Cycle Engineering and Management
Sustainable Production, Life Cycle Engineering and Management
Zusatzinfo XXXIII, 288 p. 182 illus., 170 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte electric mobility • LIB recycling • lithium-ion battery disassembly • Lithium-ion recovery • LithoRec • recycling battery materials • recycling technology • scarce metals
ISBN-10 3-319-70572-5 / 3319705725
ISBN-13 978-3-319-70572-9 / 9783319705729
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich