Membrane Biophysics -

Membrane Biophysics (eBook)

New Insights and Methods

Guohui Li, Hongda Wang (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
XI, 421 Seiten
Springer Singapore (Verlag)
978-981-10-6823-2 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book highlights recent advances in and diverse techniques for exploring the plasma membrane's structure and function. It starts with two chapters reviewing the history of membrane research and listing recent advances regarding membrane structure, such as the semi-mosaic model for red blood cell membranes and the protein layer-lipid-protein island model for nucleated tissue cell membranes. It subsequently focuses on the localization and interactions of membrane components, dynamic processes of membrane transport and transmembrane signal transduction. Classic and cutting-edge techniques (e.g. high-resolution atomic force microscopy and super-resolution fluorescence microscopy) used in biophysics and chemistry are presented in a very comprehensive manner, making them useful and accessible to both researchers in the field and novices studying cell membranes. This book provides readers a deeper understanding of the plasma membrane's organization at the single molecule level and opens a new way to reveal the relationship between the membrane's structure and functions, making it essential reading for researchers in various fields.



Hongda Wang received his bachelor's degree from the Department of Molecular Biology, Jilin University in 1995 and his doctorate from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2000. He worked as a postdoctoral research associate at the Max Planck Institute of Molecular Physiology and Arizona State University from 2001 to 2007. Since 2008, he has been working as a PI at the Changchun Institute of Applied Chemistry (under the CAS 100 Talent Program). Prof. Wang is the winner of The National Science Fund for Distinguished Young Scholars. His primary research interest is in the structure and function of cell membranes using multiple single-molecule techniques, particularly atomic force microscopy, molecular recognition imaging and super-resolution fluorescence microscopy.

Guohui Li received his bachelor's degree from the Department of Physics, Liaoning Normal University in 1994 and his doctorate from Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, in 2000. He worked as a postdoctoral research associate at the University of New Mexico, University of Wisconsin Madison, and Harvard Medical School from 2000 to 2006, and served as a research scientist at Biogen Idec Inc. from 2006 to 2009. Since 2009, he has been working as a PI at DICP. His main research interest is in studying the biophysical properties and biochemical functionality of soluble and membrane-associated macromolecules through computational simulation techniques; the developments in and applications of force fields with high precision and efficiency; and the combination of new force fields and enhanced sampling techniques. The polarizable lipid models developed by his lab have been used to study the structure, dynamics of membrane bilayers, and microscopic mechanism of membrane proteins.


This book highlights recent advances in and diverse techniques for exploring the plasma membrane's structure and function. It starts with two chapters reviewing the history of membrane research and listing recent advances regarding membrane structure, such as the semi-mosaic model for red blood cell membranes and the protein layer-lipid-protein island model for nucleated tissue cell membranes. It subsequently focuses on the localization and interactions of membrane components, dynamic processes of membrane transport and transmembrane signal transduction. Classic and cutting-edge techniques (e.g. high-resolution atomic force microscopy and super-resolution fluorescence microscopy) used in biophysics and chemistry are presented in a very comprehensive manner, making them useful and accessible to both researchers in the field and novices studying cell membranes. This book provides readers a deeper understanding of the plasma membrane's organization at the single molecule level and opens a new way to reveal the relationship between the membrane's structure and functions, making it essential reading for researchers in various fields.

Hongda Wang received his bachelor’s degree from the Department of Molecular Biology, Jilin University in 1995 and his doctorate from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2000. He worked as a postdoctoral research associate at the Max Planck Institute of Molecular Physiology and Arizona State University from 2001 to 2007. Since 2008, he has been working as a PI at the Changchun Institute of Applied Chemistry (under the CAS 100 Talent Program). Prof. Wang is the winner of The National Science Fund for Distinguished Young Scholars. His primary research interest is in the structure and function of cell membranes using multiple single-molecule techniques, particularly atomic force microscopy, molecular recognition imaging and super-resolution fluorescence microscopy. Guohui Li received his bachelor’s degree from the Department of Physics, Liaoning Normal University in 1994 and his doctorate from Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, in 2000. He worked as a postdoctoral research associate at the University of New Mexico, University of Wisconsin Madison, and Harvard Medical School from 2000 to 2006, and served as a research scientist at Biogen Idec Inc. from 2006 to 2009. Since 2009, he has been working as a PI at DICP. His main research interest is in studying the biophysical properties and biochemical functionality of soluble and membrane-associated macromolecules through computational simulation techniques; the developments in and applications of force fields with high precision and efficiency; and the combination of new force fields and enhanced sampling techniques. The polarizable lipid models developed by his lab have been used to study the structure, dynamics of membrane bilayers, and microscopic mechanism of membrane proteins.

Composition and Function of Cell Membranes.- History and Traditional Techniques of Studying the Structure of Cell Membranes.- Imaging membranes by High resolution Atomic Force Microscopy.- Detection of Membrane Mechanical Properties and Endocytosis by Single Molecule Force Spectroscopy.- Super-resolution Imaging of Membrane Heterogeneity.- Analysis and Applications of Single Molecule Fluorescence in Live Cell Membranes.- Lipid Cubic Phase for Membrane Protein X-ray Crystallography.- Electron Microscopic Analysis of the Plasma Membrane and Cell Surface Molecules.- Solid-state Nuclear Magnetic Resonance Spectroscopy of Membrane Proteins.- Mass Spectrometry of Membrane Proteins.- Infrared Spectroscopy for Studying Plasma Membranes.- Computer simulations to explore membrane organization and transport.- Other Modern Methods for Studying Biomembranes.

Erscheint lt. Verlag 21.11.2017
Zusatzinfo XI, 421 p. 188 illus., 166 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Schlagworte Atomic force microscopy • computer simulation • cryo-electron microscopy • electron microscopy • Infrared and raman spectrum • Membrane structure • NMR spectroscopy • single molecule fluorescence • Single Molecule Force Spectroscopy • Super-resolution fluorescence microscopy
ISBN-10 981-10-6823-2 / 9811068232
ISBN-13 978-981-10-6823-2 / 9789811068232
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Volume One

von MD William A. Seeds

eBook Download (2020)
Seeds Scientific Performance Research (Verlag)
16,99