Nanocomposite-Based Electronic Tongue (eBook)

Carbon Nanotube Growth by Chemical Vapor Deposition and Its Application
eBook Download: PDF
2017 | 1st ed. 2018
XIII, 101 Seiten
Springer International Publishing (Verlag)
978-3-319-66848-2 (ISBN)

Lese- und Medienproben

Nanocomposite-Based Electronic Tongue - Amin TermehYousefi
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book describes the fabrication of a frequency-based electronic tongue using a modified glassy carbon electrode (GCE), opening a new field of applying organic precursors to achieve nanostructure growth. It also presents a new approach to optimizing nanostructures by means of statistical analysis. 

The chemical vapor deposition (CVD) method was utilized to grow vertically aligned carbon nanotubes (CNTs) with various aspect ratios. To increase the graphitic ratio of synthesized CNTs, sequential experimental strategies based on response surface methodology were employed to investigate the crystallinity of CNTs. In the next step, glucose oxidase (GOx) was immobilized on the optimized multiwall carbon nanotubes/gelatin (MWCNTs/Gl) composite using the entrapment technique to achieve enzyme-catalyzed oxidation of glucose at anodic potentials, which was drop-casted onto the GCE. The modified GCE's performance indicates that a GOx/MWCNTs/Gl/GC electrode can be utilized as a glucose biosensor with a high direct electron transfer rate between GOx and MWCNTs/Gl. It was possible to use the fabricated biosensor as an electronic tongue thanks to a frequency-based circuit attached to the electrochemical cell. The results indicate that the modified GCE (with GOx/MWCNTs/Gl) holds promising potential for application in voltammetric electronic tongues.


Dr. Amin TermehYousefi is a visiting research scholar and his research interests are in the areas of synthesis carbon nanomaterials (CNTs, graphene oxide, 3D graphene and graphene nanoribbons) as well as conductive polymers (polypyrrole and polyaniline) to fabricate electrochemical and electromechanical sensors. Besides, Dr. Amin has developed his research to brain-like circuits, single-walled carbon nanotube-atomic force microscopy tips, artificial fingers and artificial fingers based on haptic sensors.

Dr. Amin TermehYousefi is a visiting research scholar and his research interests are in the areas of synthesis carbon nanomaterials (CNTs, graphene oxide, 3D graphene and graphene nanoribbons) as well as conductive polymers (polypyrrole and polyaniline) to fabricate electrochemical and electromechanical sensors. Besides, Dr. Amin has developed his research to brain-like circuits, single-walled carbon nanotube-atomic force microscopy tips, artificial fingers and artificial fingers based on haptic sensors.

1.1Nanotechnology in Medical Science1.2Carbon nanotubes1.2.1Synthesis of carbon nanotubes1.2.2Carbon nanotubes: Optimization, Purification, and Functionalization1.2.3Optimization of growth condition: Response surface methodology1.2.4Purification of carbon nanotubes1.2.5Functionalization of carbon nanotubes1.3Chemically modified electrodes1.4Biosensor1.5Application of carbon nanotubes in glucose biosensor1.6Aim and Objectives1.7Thesis structure2.1Carbon nanotubes2.2Structures of carbon nanotubes2.3Synthesis methods of carbon nanotubes2.3.1Arc discharge2.3.2Laser vaporization2.3.3Chemical vapor deposition2.4Key parameters on carbon nanotubes growth by CVD method2.4.1Effects of temperature on carbon nanotubes growth2.4.2Effects of flow rate on carbon nanotubes growth2.4.3Effects of catalyst on carbon nanotubes growth: ferrocene2.5Glucose biosensor :First, Second, and third generation2.6Carbon nanotubes-based biosensors2.7Functionalization of carbon nanotubes2.7.1Functionalized carbon nanotubes for direct electron transfer in glucose biosensor2.8Carbon nanotube-based composites in glucose biosensors3.1Flowchart3.2Materials3.3Synthesis of Multilayer CNTs from Camphor oil by CVD method3.4Synthesis of well-crystalline CNTs via neutralized cooling technique by CVD method3.5Synthesis of highly oriented vertically aligned CNTs via CVD method3.6Synthesis of selective aspect ratio vertically aligned CNTs via CVD method3.7Optimization of CNTs Growth condition using response surface methodology3.7.1Design of experimental matrix3.7.2Experimental methodology3.8Characterization of synthesized CNTs3.8.1Raman Spectroscopy: Measuring Conditions3.8.2Thermogravimetric analysis (TGA): Measuring Conditions3.8.3Field Emission Scanning electron microscopy (FESEM): Measuring Conditions3.8.4Transmission electron microscopy (TEM): Measuring Conditions3.8.5Fourier transform infrared spectroscopy (FTIR): Measuring Conditions3.9Chemically modified electrodes (CMEs)3.9.1Pre-treatment of the electrodes3.9.2Preparation of phosphate buffer3.9.3Preparation of serum samples & Real sample analysis3.9.4Fabrication of Chemically modified electrodes3.10Fabrication of glucose biosensor based on vertically aligned CNTs composite (GOx/ MWCNTs/ Gl/GCE electrode)3.10.1Synthesis of and purification of MWCNTs3.10.2Fabrication of GOx/ MWCNTs/ Gl/GCE electrode3.11Electrochemical measurements of modified electrodes3.11.1Electrochemical Setup3.11.2Cyclic voltammetry3.11.3Chronoamperometric response4.1Synthesis of CNTs4.2Fast Synthesis of multilayer CNTs from Camphor oil4.3Synthesis of well-crystalline CNTs via neutralized cooling method4.4Highly oriented vertically aligned CNTs via CVD method4.5Synthesis of selective aspect ratio vertically aligned CNTs via CVD method4.6Optimization of the growth condition using response surface methodology4.6.1Crystallinity Model (ID/IG-single-response optimization)4.7Verification effects on crystallinity model of CNTs: Morphological and interfacial characterization4.7.1Effect of temperature on CNTs crystallinity4.7.2Effect of concentration of precursor on CNTs crystallinity4.7.3Effect of annealing process on CNTs crystallinity4.8Constant glucose biosensor based on vertically aligned CNT composites4.8.1Field emission scanning electron microscopy (FESEM)4.8.2Transmission electron microscopy (TEM)4.9Direct electron transfer of GOx/MWCNTs/Gl/GCE4.9.1Biocatalytic Activity of GOx/MWCNTs/Gl/GC Electrode4.9.2

Erscheint lt. Verlag 24.10.2017
Reihe/Serie Springer Series in Materials Science
Springer Series in Materials Science
Zusatzinfo XIII, 101 p. 45 illus., 35 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Carbon Nanotube-Based Biosensors • Chemical Vapour Deposition • Glucose Biosensor • Nanomaterials Growth and Optimization • Optimized carbon nanotube • Pulse Generation • Purification of Carbon nanotubes
ISBN-10 3-319-66848-X / 331966848X
ISBN-13 978-3-319-66848-2 / 9783319668482
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich