Photofunctional Rare Earth Hybrid Materials - Bing Yan

Photofunctional Rare Earth Hybrid Materials (eBook)

(Autor)

eBook Download: PDF
2017 | 1st ed. 2017
XI, 261 Seiten
Springer Singapore (Verlag)
978-981-10-2957-8 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the main research advances in the field of photofunctional rare earth hybrid materials. The first chapter discusses the fundamental principles, ranging from rare earth, rare earth luminescence, luminescent rare earth compounds and photofunctional rare earth hybrid materials. The main body of the book consists of six chapters exploring different kinds of photofunctional hybrid materials, such as hybrids based on organically modified silica; organically modified mesoporous silica; functionalized microporous zeolite and metal-organic frameworks; polymer or polymer/silica composite; and multi-component assembly of hybrids. It also includes a chapter introducing the photofunctional application of these hybrid materials. It is a valuable resource for a wide readership in various fields of rare earth chemistry, chemical science and materials science.


Bing Yan obtained his doctorate from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 1998. He continued his research as a research assistant and postdoctoral fellow at the City University of Hong Kong, Peking University and the University of Sherbrooke from 1998 to 2001. Since November 2001, he has been a professor of chemistry at Tongji University, China. His current interests focus on rare earth chemistry and photofunctional materials, including rare earth inorganic/organic molecular luminescent hybrids; rare earth functional compounds and micro-nano solid materials; and rare earth crystal framework hybrid systems. As a corresponding author, he has published over 400 research papers in international journals.


This book presents the main research advances in the field of photofunctional rare earth hybrid materials. The first chapter discusses the fundamental principles, ranging from rare earth, rare earth luminescence, luminescent rare earth compounds and photofunctional rare earth hybrid materials. The main body of the book consists of six chapters exploring different kinds of photofunctional hybrid materials, such as hybrids based on organically modified silica; organically modified mesoporous silica; functionalized microporous zeolite and metal-organic frameworks; polymer or polymer/silica composite; and multi-component assembly of hybrids. It also includes a chapter introducing the photofunctional application of these hybrid materials. It is a valuable resource for a wide readership in various fields of rare earth chemistry, chemical science and materials science.

Bing Yan obtained his doctorate from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 1998. He continued his research as a research assistant and postdoctoral fellow at the City University of Hong Kong, Peking University and the University of Sherbrooke from 1998 to 2001. Since November 2001, he has been a professor of chemistry at Tongji University, China. His current interests focus on rare earth chemistry and photofunctional materials, including rare earth inorganic/organic molecular luminescent hybrids; rare earth functional compounds and micro-nano solid materials; and rare earth crystal framework hybrid systems. As a corresponding author, he has published over 400 research papers in international journals.

Preface 6
Contents 8
Part I: Introduction 13
Chapter 1: Rare Earth, Rare Earth Luminescence, Luminescent Rare Earth Compounds, and Photofunctional Rare Earth Hybrid Materials 14
1.1 Introduction 14
1.2 Atomic Spectral Term and Energy Level Transition of Rare Earth Ions 17
1.3 Luminescence and Spectroscopy of Rare Earth Ions 17
1.4 Rare Earth Phosphors 20
1.5 Luminescent Rare Earth Coordination Compounds 22
1.6 Photofunctional Rare Earth Hybrid Materials 28
References 30
Part II: Typical Photofunctional Rare Earth Hybrid Material 33
Chapter 2: Photofunctional Rare Earth Hybrid Materials Based on Organically Modified Silica 34
2.1 Introduction 34
2.2 Photofunctional Rare Earth Hybrid Materials Based on Aromatic Carboxylic Acid-Modified Silica 37
2.2.1 Photofunctional Rare Earth Hybrid Materials Based on Aromatic Carboxylic Acid-Modified Silica Through Carboxylic Group Grafting 37
2.2.2 Photofunctional Rare Earth Hybrid Materials Based on Aromatic Carboxylic Acid-Modified Silica Through Amino Group Grafting 39
2.2.3 Photofunctional Rare Earth Hybrid Materials Based on Aromatic Carboxylic Acid-Modified Silica Through Hydroxyl Group Grafting 41
2.2.4 Photofunctional Rare Earth Hybrid Materials Based on Aromatic Carboxylic Acid-Modified Silica Through Mercapto Group Grafting 41
2.3 Photofunctional Rare Earth Hybrid Materials Based on ?-Diketone and Its Anaologue Derivative-Modified Silica 44
2.3.1 Photofunctional Rare Earth Hybrid Materials Based on ?-Diketone-Modified Silica 44
2.3.2 Photofunctional Rare Earth Hybrid Materials Based on Sulfonamide Derivative-Modified Silica 47
2.3.3 Photofunctional Rare Earth Hybrid Materials Based on ?-Diketone Analogue-Modified Silica 48
2.3.4 Photofunctional Rare Earth Hybrid Materials Based on 1,3-Bis(2-Formylphenoxy)-2-Propanol-Modified Silica 48
2.4 Photofunctional Rare Earth Hybrid Materials Based on Macrocyclic Compound-Modified Silica 49
2.4.1 Photofunctional Rare Earth Hybrid Materials Based on Calixarene Derivative-Modified Silica 49
2.4.2 Photofunctional Rare Earth Hybrid Materials Based on Crown Derivative-Modified Silica 50
2.4.3 Photofunctional Rare Earth Hybrid Materials Based on Porphyrin Derivative-Modified Silica 51
2.4.4 Photofunctional Rare Earth Hybrid Materials Based on Schiff-Base Derivative Compound-Modified Silica 52
2.5 Photofunctional Rare Earth Hybrid Materials Based on Heterocyclic Compound-Modified Silica 52
2.5.1 Photofunctional Rare Earth Hybrid Materials Based on Bipyridine Derivative-Modified Silica 54
2.5.2 Photofunctional Rare Earth Hybrid Materials Based on Amino Compound-Modified Silica 55
2.5.3 Photofunctional Rare Earth Hybrid Materials Based on Hydroxyl Compound-Modified Silica 55
2.5.4 Photofunctional Rare Earth Hybrid Materials Based on Mercapto Compounds (3-alkyl-4-amino-5-ylsulfanyl-1,2,4-triazole)-Modified Silica 56
2.5.5 Photofunctional Rare Earth Hybrid Materials Based on Other Special ORMOSIL-Derived Silica 58
2.6 Photofunctional Rare Earth Hybrid Materials Based on Composite Matrices of Silica 58
2.7 Conclusion and Outlook 60
References 60
Chapter 3: Photofunctional Rare Earth Hybrid Materials Based on Organically Modified Mesoporous Silica 66
3.1 Introduction 66
3.2 Photofunctional Rare Earth Hybrid Materials Based on Organically Modified MCM-Type Mesoporous Silica 68
3.3 Photofunctional Rare Earth Hybrid Materials Based on Organically Modified SBA-Type Mesoporous Silica 73
3.4 Photofunctional Rare Earth Hybrid Materials Based on POMs-Type Mesoporous Silica 78
3.5 Photofunctional Rare Earth Hybrid Materials Based on Organically Modified Mesoporous Silica and Other Inorganic Hosts 81
3.6 Photofunctional Rare Earth Hybrid Materials Based on Organically Modified Mesoporous Silica and Polymer Units 84
3.7 Conclusion and Outlook 86
References 87
Chapter 4: Photofunctional Rare Earth Hybrid Materials Based on Functionalized Microporous Zeolites 92
4.1 Zeolite, Rare Earth Ion-Functionalized Zeolites, and Their Photophysical Properties 92
4.2 Photofunctional Rare Earth Hybrid Materials Based on Functionalized Zeolite-FAU 97
4.3 Photofunctional Rare Earth Hybrid Materials Based on Functionalized Zeolite A 102
4.4 Photofunctional Rare Earth Hybrid Materials Based on Functionalized Zeolite L 106
4.5 Conclusion and Outlook 113
References 113
Chapter 5: Photofunctional Rare Earth Hybrid Materials Based on Functionalized Metal–Organic Frameworks 116
5.1 Introduction to Metal–Organic Frameworks (MOFs) 116
5.2 Photofunctional Rare Earth Hybrid Materials Based on the Ionic Substitution Functionalized Metal–Organic Frameworks 119
5.3 Photofunctional Rare Earth Hybrid Materials Based on the Ion Exchange Functionalized Metal–Organic Frameworks 122
5.4 Photofunctional Rare Earth Hybrid Materials Based on the Coordinated Metal–Organic Frameworks 125
5.5 Photofunctional Rare Earth Hybrid Materials Based on the Covalent Postsynthetic Modification of Metal–Organic Frameworks 131
5.6 Photofunctional Rare Earth Hybrid Materials Based on the Composition of Metal–Organic Frameworks with Other Species 135
5.7 Conclusion and Outlook 139
References 140
Chapter 6: Photofunctional Rare Earth Hybrid Materials Based on Polymer and Polymer/Silica Composite 144
6.1 Photofunctional Rare Earth Hybrid Materials Based on Organic Polymers 145
6.2 Photofunctional Rare Earth Hybrid Materials Based on the Polymer Composite of Other Units Consisting Di-ureasils 149
6.3 Photofunctional Rare Earth Hybrid Material-Based Polymer/Silica Composite Through Coordination Bonding Assembly 156
6.4 Photofunctional Rare Earth Hybrid Materials Based on Polymer/Silica Composite Through Covalent Bonding Assembly 162
6.5 Photofunctional Rare Earth Hybrid Materials Based on Polymer Composite and Other Units 166
6.6 Conclusion and Outlook 168
References 169
Part III: Multicomponent Assembly 173
Chapter 7: Photofunctional Rare Earth Hybrid Materials Based on Multicomponent Assembly 174
7.1 Photofunctional Rare Earth Hybrid Materials Based on Modified Clay 175
7.2 Photofunctional Rare Earth Hybrid Materials Based on Ionogels 179
7.3 Photofunctional Rare Earth Hybrid Materials Based on Multicomponent Nanocomposite 185
7.4 Photofunctional Rare Earth Hybrid Materials Based on Polyoxometalate 193
7.5 Photofunctional Rare Earth Hybrid Materials Based on Multi-host Assembly 198
7.6 Conclusion and Outlook 199
References 200
Part IV: Photophysical Application 204
Chapter 8: Photophysical Applications of Photofunctional Rare-Earth Hybrid Materials 205
8.1 Photofunctional Rare-Earth Hybrid Materials for Luminescent Solar Concentrators (LSC) 206
8.2 Photofunctional Rare-Earth Hybrid Materials for Luminescent Devices and Barcoding 210
8.3 Photofunctional Hybrid Materials as Probes or Sensors for Metal Cations 216
8.3.1 Photofunctional Hybrid Materials as Probes or Sensors for Fe3+ and Fe2+ 216
8.3.2 Photofunctional Hybrid Materials as Probes or Sensors for Cd2+ and Hg2+ 219
8.3.3 Photofunctional Hybrid Materials as Probes or Sensors for Cu2+ and Ag+ 225
8.3.4 Photofunctional Hybrid Materials as Probes or Sensors for Other Cations 229
8.4 Photofunctional Hybrid Materials as Probes or Sensors for Anions 230
8.4.1 Photofunctional Hybrid Materials as Probes or Sensors for F? 230
8.4.2 Photofunctional Hybrid Materials as Probes or Sensors for CrO42? or Cr2O72? 233
8.4.3 Photofunctional Hybrid Materials as Probes or Sensors for Other Anions 235
8.5 Photofunctional Hybrid Materials as Probes or Sensors for Molecules 236
8.6 Photofunctional Hybrid Materials as Probes or Sensors for Special Molecule Species or Indices 243
8.7 Photofunctional Hybrid Materials as Probes or Sensors for Physical Properties 250
8.8 Conclusion and Outlook 257
References 258
Index 262

Erscheint lt. Verlag 28.8.2017
Reihe/Serie Springer Series in Materials Science
Springer Series in Materials Science
Zusatzinfo XI, 261 p. 147 illus., 106 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Functionalized zeolite • Lanthanide • Luminescence • Mesoporous silica • Metal-Organic Frameworks • Multi-component assembly • Organically modified silane • Photofunctional hybrid material • Photophysical application • Polymer/Silica composite • Rare Earth
ISBN-10 981-10-2957-1 / 9811029571
ISBN-13 978-981-10-2957-8 / 9789811029578
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95