Fractured Vuggy Carbonate Reservoir Simulation (eBook)

, (Autoren)

eBook Download: PDF
2017 | 2nd ed. 2017
XI, 245 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-55032-8 (ISBN)

Lese- und Medienproben

Fractured Vuggy Carbonate Reservoir Simulation - Jun Yao, Zhao-Qin Huang
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.



Dr. Jun Yao, professor in School of Petroleum Engineering, China University of Petroleum (UPC), the Director of Center of Multiphase Flow in Porous Media (CMFPM). He was the Dean of School of Petroleum Engineering (2003-2013) and the Director of Science and Technology Department (2013 to present). His scientific research mainly focuses on multiphase flow in porous media, well testing and smart oilfield. He has published 8 monographs and more than 300 academic papers, over 170 of which are indexed by SCI and EI. In addition, he owns the proprietary of intellectual property rights of five softwares. He is a committee member of the Academic Degrees Committee of the State Council and specializes in subject assessment. Moreover, he is an evaluation expert in Engineering and Material Department of National Natural Science Foundation of China (NSFC), president of Chinese Society for Fluid Flow in Porous Media, vice president of Professor Committee of UPC, counselor of International Center for Carbonate Reservoir (ICCR), director of State Key Disciplines of Oil and Gas Field Development in UPC and a member of editorial boards of many journals. Yao is the director of Innovation and Intelligence Development Program for World Class Disciplines of Universities (111 Program) in Oil and Gas Development Discipline of National Ministry of Education. His team is awarded as 'Cheung Kong Scholars' Innovative Research Team by National Ministry of Education and Excellent Innovation Team of Oil and Gas Development in Shandong Province. As the team leader, he has been invited to give the keynote speech in a large number of international meetings. His team also organized a great many of national and international conferences. He was elected fellow of State-level New Century of Talents Project of China and Taishan Scholars of Shandong Province. He is also the recipient of Special Government Allowances of the State Council and the Second Class Award of National Science and Technology Progress, eight provincial awards of Science and Technology Achievement Award and the Second Class Award of State -level Teaching.
Dr. Huang, Zhao-Qin graduated from China University of Petroleum (East China) in 2004, with the Bachelor of Civil Engineering and he obtained his PhD of Petroleum Engineering from China University of Petroleum (East China), in 2012. He has been a visiting post-doctor in Colorado School of Mines in United States from 2013 to now. He is the winner of the Distinguished Doctoral Thesis of the Shandong Province. His research fields cover multi-phase flow in fractured vuggy reservoirs, multi-scale and multi-physics modelling of the transport phenomena in porous media, coupled multi-phase flow and geomechanics in reservoir simulation. He has published more than 30 papers in many peer-reviewed journals as the main author or co-author, covering computational physics, as well as petroleum engineering. He has also authored a number of books and book chapters. He has won three five National or Provincial Science and Technology Award.

Dr. Jun Yao, professor in School of Petroleum Engineering, China University of Petroleum (UPC), the Director of Center of Multiphase Flow in Porous Media (CMFPM). He was the Dean of School of Petroleum Engineering (2003-2013) and the Director of Science and Technology Department (2013 to present). His scientific research mainly focuses on multiphase flow in porous media, well testing and smart oilfield. He has published 8 monographs and more than 300 academic papers, over 170 of which are indexed by SCI and EI. In addition, he owns the proprietary of intellectual property rights of five softwares. He is a committee member of the Academic Degrees Committee of the State Council and specializes in subject assessment. Moreover, he is an evaluation expert in Engineering and Material Department of National Natural Science Foundation of China (NSFC), president of Chinese Society for Fluid Flow in Porous Media, vice president of Professor Committee of UPC, counselor of International Center for Carbonate Reservoir (ICCR), director of State Key Disciplines of Oil and Gas Field Development in UPC and a member of editorial boards of many journals. Yao is the director of Innovation and Intelligence Development Program for World Class Disciplines of Universities (111 Program) in Oil and Gas Development Discipline of National Ministry of Education. His team is awarded as “Cheung Kong Scholars” Innovative Research Team by National Ministry of Education and Excellent Innovation Team of Oil and Gas Development in Shandong Province. As the team leader, he has been invited to give the keynote speech in a large number of international meetings. His team also organized a great many of national and international conferences. He was elected fellow of State-level New Century of Talents Project of China and Taishan Scholars of Shandong Province. He is also the recipient of Special Government Allowances of the State Council and the Second Class Award of National Science and Technology Progress, eight provincial awards of Science and Technology Achievement Award and the Second Class Award of State –level Teaching.Dr. Huang, Zhao-Qin graduated from China University of Petroleum (East China) in 2004, with the Bachelor of Civil Engineering and he obtained his PhD of Petroleum Engineering from China University of Petroleum (East China), in 2012. He has been a visiting post-doctor in Colorado School of Mines in United States from 2013 to now. He is the winner of the Distinguished Doctoral Thesis of the Shandong Province. His research fields cover multi-phase flow in fractured vuggy reservoirs, multi-scale and multi-physics modelling of the transport phenomena in porous media, coupled multi-phase flow and geomechanics in reservoir simulation. He has published more than 30 papers in many peer-reviewed journals as the main author or co-author, covering computational physics, as well as petroleum engineering. He has also authored a number of books and book chapters. He has won three five National or Provincial Science and Technology Award.

Introduction.- Numerical simulation of discrete fracture model.- Numerical simulation of discrete fracture-vug network model.- Numerical simulation of equivalent media model.- Numerical simulation based on mixed model.- Numerical simulation based on multi-scale finite element methods.

Erscheint lt. Verlag 8.8.2017
Reihe/Serie Springer Geophysics
Springer Geophysics
Zusatzinfo XI, 245 p. 152 illus., 82 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Physik / Astronomie
Schlagworte Discrete facture vug model • Discrete fracture models • Equivalent porous meida • Fracture vuggy carbonate reservoir • Multiscale method • numerical simulation
ISBN-10 3-662-55032-6 / 3662550326
ISBN-13 978-3-662-55032-8 / 9783662550328
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Aufbau der Erde, Erdgeschichte und Geologie Deutschlands

von Alecia M. Spooner

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
22,99