Ginzburg-Landau Vortices - Fabrice Bethuel, Haïm Brezis, Frédéric Hélein

Ginzburg-Landau Vortices

Buch | Softcover
XXIX, 159 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-66672-3 (ISBN)
74,89 inkl. MwSt

This book is concerned with the study in two dimensions of stationary solutions of u of a complex valued Ginzburg-Landau equation involving a small parameter . Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as tends to zero.

One of the main results asserts that the limit u-star of minimizers u exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or as physicists would say, vortices are quantized.

The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis,partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.

Introduction.- Energy Estimates for S1-Valued Maps.- A Lower Bound for the Energy of S1-Valued Maps on Perforated Domains.- Some Basic Estimates for u .- Toward Locating the Singularities: Bad Discs and Good Discs.- An Upper Bound for the Energy of u away from the Singularities.- u _n: u-star is Born! - u-star Coincides with THE Canonical Harmonic Map having Singularities (aj).- The Configuration (aj) Minimizes the Renormalization Energy W.- Some Additional Properties of u .- Non-Minimizing Solutions of the Ginzburg-Landau Equation.- Open Problems.

Erscheinungsdatum
Reihe/Serie Modern Birkhäuser Classics
Zusatzinfo XXIX, 159 p. 5 illus., 1 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 299 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie
Schlagworte Differential calculus & equations • Differential calculus & equations • Ginzburg-Landau Vortices • Mathematical Applications in the Physical Sciences • Mathematical Modelling • Mathematics • mathematics and statistics • nonlinear functional analysis • Partial differential equations • Phase Transition Phenomena • superconductors • Superfluids
ISBN-10 3-319-66672-X / 331966672X
ISBN-13 978-3-319-66672-3 / 9783319666723
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99