Ginzburg-Landau Vortices (eBook)
XXIX, 159 Seiten
Springer International Publishing (Verlag)
978-3-319-66673-0 (ISBN)
This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ɛ tends to zero.
One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or as physicists would say, vortices are quantized.
The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.
Introduction.- Energy Estimates for S1-Valued Maps.- A Lower Bound for the Energy of S1-Valued Maps on Perforated Domains.- Some Basic Estimates for uɛ.- Toward Locating the Singularities: Bad Discs and Good Discs.- An Upper Bound for the Energy of uɛ away from the Singularities.- uɛ_n: u-star is Born! - u-star Coincides with THE Canonical Harmonic Map having Singularities (aj).- The Configuration (aj) Minimizes the Renormalization Energy W.- Some Additional Properties of uɛ.- Non-Minimizing Solutions of the Ginzburg-Landau Equation.- Open Problems.
Erscheint lt. Verlag | 21.9.2017 |
---|---|
Reihe/Serie | Modern Birkhäuser Classics | Modern Birkhäuser Classics |
Zusatzinfo | XXIX, 159 p. 5 illus., 1 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Ginzburg-Landau Vortices • nonlinear functional analysis • Partial differential equations • Phase Transition Phenomena • superconductors • Superfluids |
ISBN-10 | 3-319-66673-8 / 3319666738 |
ISBN-13 | 978-3-319-66673-0 / 9783319666730 |
Haben Sie eine Frage zum Produkt? |
Größe: 17,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich