Science of Synthesis Knowledge Updates 2017 Vol. 2 (eBook)

eBook Download: PDF | EPUB
2017 | 1. Auflage
542 Seiten
Thieme (Verlag)
978-3-13-241416-7 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2017 Vol. 2 -
Systemvoraussetzungen
Systemvoraussetzungen
2.999,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Several annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Science of Synthesis: Knowledge Updates 2017/2 1
Title Page 7
Imprint 8
Preface 9
Abstracts 11
Overview 19
Table of Contents 21
17.9.24 Phthalocyanines and Related Compounds 35
17.9.24.1 Metal-Free Phthalocyanines 36
17.9.24.1.1 Method 1: Synthesis from Phthalonitrile 37
17.9.24.1.2 Method 2: Synthesis from Bicyclo[2.2.2]octadiene-Fused Tetraazaporphyrins (Porphyrazines) 39
17.9.24.1.3 Method 3: Synthesis from Phthalimide, Phthalic Anhydride, or Phthalic Acid 40
17.9.24.1.4 Method 4: Demetalation of a Zinc Complex 42
17.9.24.2 Metal–Phthalocyanine Complexes 42
17.9.24.2.1 Method 1: Synthesis from Phthalonitrile 43
17.9.24.2.2 Method 2: Synthesis from Phthalic Anhydride 47
17.9.24.2.3 Method 3: Synthesis from Phthalic Acid 49
17.9.24.2.4 Method 4: Synthesis from Phthalimide 49
17.9.24.3 1,8(11),15(18),22(25)-Tetrasubstituted Phthalocyanines and 1:25,11:15-Bridged Phthalocyanines 51
17.9.24.3.1 Method 1: Synthesis from 3-Substituted Phthalonitriles 51
17.9.24.3.1.1 Variation 1: Regioselective Preparation of 1,8,15,22-Tetrasubstituted Phthalocyanines from 3-Substituted Phthalonitriles 51
17.9.24.3.2 Method 2: Side-Strapped 1:25,11:15-Tetrasubstituted Phthalocyanines from Bis (isoindolinediimines) 52
17.9.24.3.3 Method 3: Postfunctionalization of Phthalocyanines 53
17.9.24.3.3.1 Variation 1: Derivatization of Peripheral Substituents 54
17.9.24.3.3.2 Variation 2: Chiral 1,8,15,22-Tetrasubstituted Phthalocyanines 56
17.9.24.4 2,9(10),16(17),23(24)-Tetrasubstituted Phthalocyanines and 2:24,10:16-Bridged Phthalocyanines 61
17.9.24.4.1 Method 1: Synthesis from 4-Substituted Phthalonitriles 62
17.9.24.4.1.1 Variation 1: Side-Strapped 2:24,10:16-Bridged Phthalocyanines from 4,4?-Substituted Bis (phthalonitriles) 62
17.9.24.4.2 Method 2: Synthesis from 4-Substituted Phthalic Anhydrides 64
17.9.24.4.3 Method 3: Synthesis from 4-5 Substituted Phthalimides 65
17.9.24.4.4 Method 4: Derivatization of Peripheral Substituents 65
17.9.24.4.5 Method 5: Postfunctionalization of Axial Substituents 67
17.9.24.5 1,3,8,10(9,11),15,17(16,18),22,24(23,25)-Octasubstituted Phthalocyanines 68
17.9.24.5.1 Method 1: Synthesis from 3,5-Disubstituted Phthalic Acids 68
17.9.24.5.2 Method 2: Postfunctionalization of Phthalocyanines 69
17.9.24.6 1,4,8,11,15,18,22,25-Octasubstituted Phthalocyanines 71
17.9.24.6.1 Method 1: Synthesis from 3,6-Disubstituted Phthalonitriles 71
17.9.24.6.2 Method 2: Derivatization of Peripheral Substituents 73
17.9.24.6.3 Method 3: Postfunctionalization of Axial Substituents 73
17.9.24.7 2,3,9,10,16,17,23,24-Octasubstituted Phthalocyanines 75
17.9.24.7.1 Method 1: Synthesis from 4,5-Disubstituted Phthalonitriles 75
17.9.24.7.1.1 Variation 1: Octasubstituted Phthalocyanines Possessing Two Types of Substituents 77
17.9.24.7.2 Method 2: Synthesis from 4,5-Disubstituted Phthalic Anhydrides 79
17.9.24.7.3 Method 3: Synthesis from 5,6-Disubstituted Isoindoline-1,3-diimines 79
17.9.24.7.4 Method 4: Derivatization of Peripheral Substituents 80
17.9.24.7.5 Method 5: Postfunctionalization of Axial Substituents 82
17.9.24.8 2:3,9:10,16:17,23:24-Bridged Phthalocyanines 84
17.9.24.8.1 Method 1: Synthesis from 4:5-Bridged Phthalonitriles 84
17.9.24.8.2 Method 2: Synthesis from 5:6-Bridged Isoindoline-1,3-diimines 86
17.9.24.8.3 Method 3: Synthesis from 5:6-Bridged Phthalic Anhydrides 87
17.9.24.8.4 Method 4: Derivatization of Peripheral Substituents 88
17.9.24.9 Dodecasubstituted Phthalocyanines 90
17.9.24.9.1 Method 1: Synthesis from 3,4,5-Trisubstituted Phthalonitriles 91
17.9.24.9.2 Method 2: Synthesis from 3,4,5-Trisubstituted Phthalic Acids 92
17.9.24.9.3 Method 3: Synthesis from 3,4,6-Trisubstituted Phthalonitriles 92
17.9.24.10 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecasubstituted Phthalocyanines, 1:2,3:4,8:9,10:11,15:16,17:18,22:23,24:25-Bridged Phthalocyanines, and 1,2:3,4,8,9:10,11,15,16:17,18,22,23:24,25-Bridged Phthalocyanines 93
17.9.24.10.1 Method 1: Synthesis from 3,4,5,6-Tetrasubstituted Phthalonitriles 94
17.9.24.10.1.1 Variation 1: Hexadecasubstituted Phthalocyanines Possessing Two Types of Substituents from Symmetrical 3,4,5,6-Tetrasubstituted Phthalonitriles 95
17.9.24.10.1.2 Variation 2: Hexadecasubstituted Phthalocyanines Possessing Two Types of Substituents from Unsymmetrical 3,4,5,6-Tetrasubstituted Phthalonitriles 96
17.9.24.10.1.3 Variation 3: Hexadecasubstituted Phthalocyanines Possessing Three Types of Substituents 98
17.9.24.10.1.4 Variation 4: 1,4,8,11,15,18,22,25-Octasubstituted 2:3,9:10,16:17,23:24-Bridged Phthalocyanines from Phthalonitriles 99
17.9.24.10.1.5 Variation 5: 2,3,4,8,9,10,16,17,18,22,23,24-Dodecasubstituted 1:25,11:15-Bridged Phthalocyanines from Bis (phthalonitriles) 100
17.9.24.10.2 Method 2: Synthesis from 3,4,5,6-Tetrasubstituted Phthalic Anhydrides 100
17.9.24.10.3 Method 3: Synthesis from 3,4,5,6-Tetrasubstituted Phthalimides 101
17.9.24.10.4 Method 4: Synthesis from 3,4,5,6-Tetrasubstituted Isoindoline-1,3-diimines 102
17.9.24.10.5 Method 5: Derivatization of Peripheral Substituents 103
17.9.24.10.6 Method 6: Postfunctionalization of Axial Substituents 105
17.9.24.11 5,10,15,20-Tetraazaporphyrins (Porphyrazines) 106
17.9.24.11.1 Method 1: Synthesis from 2,3-Disubstituted Maleonitriles 107
17.9.24.11.1.1 Variation 1: 2:3,7:8,12:13,17:18-Bridged Tetraazaporphyrins from Cyclic Maleonitriles 108
17.9.24.11.2 Method 2: Synthesis from 3,4-Disubstituted Pyrrole-2,5-diimines 109
17.9.24.11.3 Method 3: Nonuniformly Substituted Tetraazaporphyrins 110
17.9.24.11.3.1 Variation 1: A2B2-Type Tetraazaporphyrins from Crossover Macrocyclization Reactions 111
17.9.24.11.4 Method 4: Post-Functionalization of Porphyrazines 113
17.9.24.12 1,2-Naphthalocyanines 115
17.9.24.12.1 Method 1: Synthesis from Naphthalene-1,2-dicarbonitriles 115
17.9.24.13 2,3-Naphthalocyanines 116
17.9.24.13.1 Method 1: Synthesis from Naphthalene-2,3-dicarbonitriles 116
17.9.24.13.2 Method 2: Synthesis from Benzoisoindolinediimines 118
17.9.24.13.3 Method 3: Synthesis from Naphthalene Anhydrides 120
17.9.24.13.4 Method 4: Synthesis from Naphthalimides 121
17.9.24.13.5 Method 5: Synthesis from Bicyclo[2.2.2]octene-fused Phthalocyanines 122
17.9.24.13.6 Method 6: Postfunctionalization of Axial Substituents 123
17.9.24.14 9,10-Phenanthrenocyanines and 2,3-Phenanthrenocyanines 125
17.9.24.14.1 Method 1: 9,10-Phenanthrenocyanines from Phenanthrene-9,10-dicarbonitriles 125
17.9.24.14.2 Method 2: 2,3-Phenanthrenocyanines from Phenanthrene-2,3-dicarboxylic Acid Imides 127
17.9.24.15 2,3-Triphenylenocyanines 127
17.9.24.15.1 Method 1: Synthesis from Triphenylene-2,3-dicarbonitriles 127
17.9.24.16 2,3-Anthracenocyanines 129
17.9.24.16.1 Method 1: Synthesis from Anthracene-2,3-dicarbonitriles 129
17.9.24.17 4,5-Pyrenocyanines 130
17.9.24.17.1 Method 1: Synthesis from Pyrene-4,5-dicarbonitriles 130
17.9.24.18 4,5-Benzoperylenocyanines 131
17.9.24.18.1 Method 1: Synthesis from Benzo[ghi]perylene-1,2-dicarbonitriles 131
17.9.24.19 Helicenocyanines and Benzohelicenocyanines 132
17.9.24.19.1 Method 1: Synthesis from [5]Helicene-7,8-dicarbonitriles 133
17.9.24.19.2 Method 2: Synthesis from Benzo[5]helicene-8,9-dicarbonitriles 134
17.9.24.20 Azulenocyanines 135
17.9.24.20.1 Method 1: Synthesis from Azulene-5,6-dicarbonitriles 135
17.9.24.21 Tetraazachlorins and Tetraazabacteriochlorins 137
17.9.24.21.1 Method 1: Mixed Condensation of Succinonitrile Derivatives and Another Dinitrile 137
17.9.24.21.2 Method 2: Mixed Condensation of Succinonitrile Derivatives with Phthalic Anhydrides or Phthalimides 141
17.9.24.21.3 Method 3: Cycloaddition Reactions of Tetraazaporphyrins 143
17.9.24.22 Tetra- and Octaazaphthalocyanines 145
17.9.24.22.1 Method 1: Synthesis from Pyridine-3,4-dicarbonitrile 147
17.9.24.22.2 Method 2: Synthesis from Pyridine-3,4-dicarboxylic Acid 147
17.9.24.22.3 Method 3: Synthesis from 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-diimine 148
17.9.24.22.4 Method 4: Synthesis from Diazaisoindoline-1,3-diimines 149
17.9.24.22.5 Method 5: Synthesis from Pyrazine-2,3-dicarboxylic Acid 150
17.9.24.22.6 Method 6: Modification of Preformed Azaphthalocyanines 150
17.9.24.23 Triazacorroles 152
17.9.24.23.1 Method 1: Synthesis from Isoindoline-1,3-diimines 153
17.9.24.23.2 Method 2: Synthesis from Phthalocyanines 153
17.9.24.23.3 Method 3: Synthesis from Tetraazaporphyrins 155
17.9.24.23.4 Method 4: Modification of Preformed Triazacorroles 155
17.9.24.23.4.1 Variation 1: Demetalation of Phosphorus(V) Triazacorroles 155
17.9.24.23.4.2 Variation 2: Metalation of Free-Base Triazacorroles 156
17.9.24.23.4.3 Variation 3: Modification of the Central Metal 157
17.9.24.24 Subphthalocyanines 159
17.9.24.24.1 Method 1: Synthesis from Phthalonitriles 159
17.9.24.24.1.1 Variation 1: 1,8,15(18)-Trisubstituted Subphthalocyanines from 3-Substituted Phthalonitriles 161
17.9.24.24.1.2 Variation 2: 2,9,16(17)-Trisubstituted Subphthalocyanines from 4-Substituted Phthalonitriles 162
17.9.24.24.1.3 Variation 3: 2,3,9,10,16,17-Hexasubstituted Subphthalocyanines and 2,3-Subnaphthalocyanines from 4,5-Disubstituted Phthalonitriles 163
17.9.24.24.1.4 Variation 4: Hexasubstituted Subphthalocyanines and 1,2-Subnaphthalocyanines from 3,4- and 3,5-Disubstituted Phthalonitriles 165
17.9.24.24.1.5 Variation 5: 1,4,8,11,15,18-Hexasubstituted Subphthalocyanines from 3,6-Disubstituted Phthalonitriles 166
17.9.24.24.1.6 Variation 6: Dodecasubstituted Subphthalocyanines from 3,4,5,6-Tetrasubstituted Phthalonitriles 166
17.9.24.24.2 Method 2: Nonuniformly Substituted Subphthalocyanines by Crossover Cyclotrimerization 168
17.9.24.24.3 Method 3: Postfunctionalization of Subphthalocyanines 171
17.9.24.24.3.1 Variation 1: Derivatization of Peripheral Substituents 171
17.9.24.24.3.2 Variation 2: Reactions at the B?X Bond 176
17.9.24.25 Subporphyrazines 179
17.9.24.25.1 Method 1: Synthesis from Maleonitriles 179
17.9.24.25.2 Method 2: Postfunctionalization of Subporphyrazines 180
17.9.24.25.2.1 Variation 1: Derivatization of Peripheral Substituents 180
17.9.24.25.2.2 Variation 2: Reactions at the B?X Bond 182
17.9.24.26 Superazaporphyrins 182
17.9.24.26.1 Method 1: Synthesis from Pyrrole-2,5-diimines 183
17.9.24.27 Nonuniformly Substituted Phthalocyanines 184
17.9.24.27.1 Method 1: Crossover Cyclotetramerizations 184
17.9.24.27.1.1 Variation 1: Synthesis of A3B Nonuniformly Substituted Phthalocyanines 186
17.9.24.27.1.2 Variation 2: Side-Strapped AABB-Type Phthalocyanines 191
17.9.24.27.1.3 Variation 3: Synthesis of ABAB-Type Nonuniformly Substituted Phthalocyanines 192
17.9.24.27.2 Method 2: A3B-Type Phthalocyanines by Ring Expansion of Subphthalocyanines 192
17.9.24.27.3 Method 3: Synthesis of A3B-Type Phthalocyanines Using a Polymer Support 194
17.9.24.27.3.1 Variation 1: Synthesis of A3B-Type Phthalocyanines via ROMP–Capture–Release 196
17.9.24.27.4 Method 4: ABAB-Type Phthalocyanines from 1,1,3-Trichloroisoindole Derivatives 198
17.9.24.27.5 Method 5: Synthesis of ABAC-Type Phthalocyanines from Crossover Cyclotetramerization Reactions 199
17.9.24.27.6 Method 6: Postfunctionalization of Phthalocyanines 200
17.9.24.28 Multinuclear Phthalocyanines 208
17.9.24.28.1 Method 1: Cyclotetramerization Reactions Using Phthalonitriles, Oligo (phthalonitriles), or Derivatives 208
17.9.24.28.1.1 Variation 1: Dimeric Phthalocyanines from Bisphthalonitriles 208
17.9.24.28.1.2 Variation 2: Trimeric Phthalocyanines from Phthalonitriles 212
17.9.24.28.1.3 Variation 3: Dimeric Phthalocyanines from Fused Bis (pyrrolidinediimines) 214
17.9.24.28.1.4 Variation 4: Oligomeric Phthalocyanines from Phthalonitriles 215
17.9.24.28.2 Method 2: Synthesis by Connecting Preformed Phthalocyanines 217
17.9.24.28.2.1 Variation 1: Reaction of Peripheral Substituents 217
17.9.24.28.2.2 Variation 2: Axial Coordination 227
34.1.1.8 Synthesis of Fluoroalkanes by Substitution of Hydrogen (Update 2017) 245
34.1.1.8.1 Method 1: Reaction with Fluoride Ion Sources 245
34.1.1.8.1.1 Variation 1: Using Metal Fluoride Reagents 245
34.1.1.8.1.2 Variation 2: Using Ammonium Fluoride Salts 246
34.1.1.8.2 Method 2: Reaction with Selectfluor 249
34.1.1.8.2.1 Variation 1: Using Metal Catalysts 249
34.1.1.8.2.2 Variation 2: Using Organocatalysts 252
34.1.1.8.2.3 Variation 3: Using Light-Mediated Processes 253
34.1.1.8.3 Method 3: Reaction with Selectfluor II 255
34.1.1.8.4 Method 4: Reaction with N-Fluorobenzenesulfonimide 257
34.1.4.1 Synthesis of Fluoroalkanes by Substitution of a Halogen 261
34.1.4.1.1 Method 1: Substitution of Primary Halides 261
34.1.4.1.1.1 Variation 1: Using Metal Fluorides 261
34.1.4.1.1.2 Variation 2: Using Hydrogen Fluoride Complexes 264
34.1.4.1.1.3 Variation 3: Using Tetraalkylammonium Fluorides 265
34.1.4.1.1.4 Variation 4: Using Fluorosilicate Derivatives 268
34.1.4.1.2 Method 2: Substitution of Secondary Halides 268
34.1.4.1.2.1 Variation 1: Using Metal Fluorides 269
34.1.4.1.2.2 Variation 2: Using Hydrogen Fluoride Complexes 272
34.1.4.1.3 Method 3: Substitution of Tertiary Halides 275
34.1.4.1.3.1 Variation 1: Using Metal Fluorides 275
34.1.4.1.3.2 Variation 2: Using Base–Hydrogen Fluoride Complexes 276
34.1.4.1.3.3 Variation 3: Using Silver(I) Tetrafluoroborate 277
34.1.4.1.3.4 Variation 4: Using Ruthenium Complexes 277
34.1.4.3 Synthesis of Fluoroalkanes by Substitution of Oxygen and Sulfur Functionalities 281
34.1.4.3.1 Method 1: Substitution of Trifluoromethanesulfonates and Imidazolesulfonates 281
34.1.4.3.1.1 Variation 1: Using Difluorosilicate Derivatives 281
34.1.4.3.1.2 Variation 2: Using Tetrabutylammonium Fluoride 282
34.1.4.3.1.3 Variation 3: Using Base–Hydrogen Fluoride Complexes 285
34.1.4.3.1.4 Variation 4: Using Metal Fluoride 286
34.1.4.3.2 Method 2: Substitution of Cyclic Sulfates 287
34.1.4.3.2.1 Variation 1: Using Ammonium Fluorides 287
34.1.4.3.2.2 Variation 2: Using Tetrabutylammonium Fluoride for the Substitution of Cyclic Sulfamates 289
34.1.4.3.3 Method 3: Substitution of Carboxylic Esters and Cyclic Carbonates 290
34.1.4.3.4 Method 4: Substitution of O, S-Dialkyl Dithiocarbonates 291
34.1.4.3.5 Method 5: Substitution of Primary Sulfonates 292
34.1.4.3.5.1 Variation 1: Using Potassium Fluoride 293
34.1.4.3.5.2 Variation 2: Using an Ionic Liquid and Cesium Fluoride 293
34.1.4.3.5.3 Variation 3: Using Ammonium Fluorides under High Pressure 296
34.1.4.3.5.4 Variation 4: Using Ammonium Fluorides or Hydrogen Difluorides 297
34.1.4.3.5.5 Variation 5: Using Difluorosilicate Derivatives 298
34.1.4.3.6 Method 6: Substitution of Secondary Sulfonates 299
34.1.4.3.6.1 Variation 1: Using Potassium Fluoride 299
34.1.4.3.6.2 Variation 2: Using Ammonium Fluorides 300
34.1.4.3.6.3 Variation 3: Using Reagents Containing Hydrogen Fluoride 300
34.1.4.3.6.4 Variation 4: Using Difluorosilicate 302
34.1.4.3.6.5 Variation 5: Using Cesium Fluoride and Polymer-Supported Pentaethylene Glycol 303
34.1.4.3.7 Method 7: Substitution of Sulfides 304
34.1.4.3.7.1 Variation 1: Substitution of Alkyl Sulfides 304
34.1.4.3.7.2 Variation 2: Substitution of Thioglycosides 305
34.1.4.3.8 Method 8: Substitution of Ethers Using a Hydrofluoric Acid Complex 306
34.1.4.3.9 Method 9: Substitution of a Carbamimidate Using Hydrofluoric Acid Complex 307
34.1.6.4 Synthesis of Fluoroalkanes with Retention of the Functional Group (update 2017) 311
34.1.6.4.1 Method 1: Substitution of ?-Halogen Atoms 311
34.1.6.4.1.1 Variation 1: Dechlorinative Carbon–Carbon Bond Formation at an ?-sp3 Carbon Center 311
34.1.6.4.1.2 Variation 2: Debrominative Carbon–Carbon Bond Formation at an ?-sp3 Carbon Center 312
34.1.6.4.1.3 Variation 3: Deiodinative Carbon–Carbon Bond Formation at an ?-sp3 Carbon Center 319
34.1.6.4.1.4 Variation 4: Debrominative Carbon–Carbon Bond Formation at a ?-sp3 Carbon Center 321
34.1.6.4.2 Method 2: Substitution of Carboxy or Alkoxycarbonyl Groups 322
34.1.6.4.3 Method 3: Substitution of Other Groups 324
34.1.6.4.4 Method 4: Deprotonation 327
34.1.6.4.4.1 Variation 1: Deprotonative Construction of a Carbon–Carbon Single Bond 327
34.1.6.4.4.2 Variation 2: Deprotonative Construction of a Carbon-Carbon Single Bond under an SN2 or SN2? Mechanism 333
34.1.6.4.4.3 Variation 3: Deprotonative Construction of a Carbon–Carbon Single Bond by Conjugate Addition 336
34.1.6.4.4.4 Variation 4: Deprotonative Construction of a Carbon–Carbon Single Bond by Addition to a C=X Bond 341
34.1.6.4.5 Method 5: Hydrogenation (Reduction) 348
34.1.6.4.5.1 Variation 1: Hydrogenation of a Carbon–Carbon Double Bond 348
34.1.6.4.5.2 Variation 2: Reduction of a Carbon–Nitrogen Double Bond 350
34.1.6.4.6 Method 6: Ring Formation 352
34.1.6.4.6.1 Variation 1: By Cycloaddition 352
34.1.6.4.6.2 Variation 2: By Iodolactonization 353
34.2.2 Fluorocyclopropanes 359
34.2.2.1 Method 1: Carbene and Carbenoid Addition to Fluoroalkenes 360
34.2.2.1.1 Variation 1: Simmons–Smith Reaction of Fluorinated Allylic Alcohols Using Diethylzinc/Diiodomethane 360
34.2.2.1.2 Variation 2: Simmons–Smith Reaction of Fluorinated Silyl Enol Ethers Using Diethylzinc/Diiodomethane 361
34.2.2.1.3 Variation 3: Addition of Diazoacetic Esters to Fluoroalkenes 361
34.2.2.1.4 Variation 4: Enantioselective Addition of Methyl 2-Diazo-2-phenylacetate to Fluoroalkenes 363
34.2.2.1.5 Variation 5: Racemic and Catalytic Enantioselective Addition of Diacceptor Diazo Derivatives to Fluoroalkenes 364
34.2.2.1.6 Variation 6: Intramolecular Cyclopropanation of (Z)-3-Bromo-3-fluoroallyl 2-Cyano-2-diazoacetate 367
34.2.2.2 Method 2: 1-Fluoro-1-halocyclopropanes via Addition of Fluorohalocarbenes to Alkenes 367
34.2.2.2.1 Variation 1: Phase-Transfer-Catalyzed Formation of Chlorofluorocyclopropanes 367
34.2.2.2.2 Variation 2: Bromofluorocarbene Addition to Alkenes Using Phase-Transfer Catalysis 368
34.2.2.3 Method 3: Direct Fluorocarbene Addition to Alkenes 370
34.2.2.3.1 Variation 1: Fluorocyclopropanes from Chlorofluoromethyl Phenyl Sulfide and Alkenes 370
34.2.2.3.2 Variation 2: Fluorocyclopropanes from Difluoroiodomethane and Alkenes 372
34.2.2.4 Method 4: Fluorocyclopropanes via Michael-Initiated Ring-Closure Reaction 374
34.2.2.4.1 Variation 1: Fluorocyclopropanes from ?-Fluorinated Sulfoximides and ?,?-Unsaturated Weinreb Amides 375
34.2.2.4.2 Variation 2: Fluorocyclopropanes from a (1-Fluorovinyl) diphenylsulfonium Salt and Active Methylene Compounds 376
34.2.2.4.3 Variation 3: Fluorocyclopropanes from Michael Acceptors and Ethyl 2,2-Dibromo-2-fluoroacetate 377
34.2.2.4.4 Variation 4: Fluorocyclopropanes from Michael Acceptors and Quaternary Ammonium Salts of Bromo Fluoro Amide Derivatives 382
34.2.2.5 Method 5: Fluorohydroxylation of Alkylidenecyclopropanes 383
34.2.2.6 Method 6: Reaction of Chlorocyclopropanes with Fluoride Anion 383
34.3.2 (Fluoromethyl) cyclopropanes (Update 2017) 387
34.3.2.1 Method 1: Fluorodehydroxylation of Cyclopropylmethanols with N, N-Diethylaminosulfur Trifluoride or Bis (2-methoxyethyl) aminosulfur Trifluoride (Deoxo-Fluor) 387
34.3.2.2 Method 2: Formation of Cyclopropylmethyl Sulfonates and Displacement by Fluoride 388
34.3.2.3 Method 3: Rearrangement of Fluoro Epoxides 388
34.4.2 Fluorocyclobutanes (Update 2017) 391
34.4.2.1 Method 1: Fluorodehydroxylation of Cyclobutanols 391
34.4.2.1.1 Variation 1: Fluorodehydroxylation Using Bis (2-methoxyethyl) aminosulfur Trifluoride (Deoxo-Fluor) 392
34.4.2.1.2 Variation 2: Fluorodehydroxylation Using Tetramethylfluoroformamidinium Hexafluorophosphate (TFFH) 394
34.4.2.2 Method 2: Reactions of Cyclobutanes Bearing a Leaving Group with Fluorinating Agents 395
34.4.2.2.1 Variation 1: Reaction of a Bridged Halocyclobutane with Silver(I) Fluoride 395
34.4.2.2.2 Variation 2: Reactions of Cyclobutane Trifluoromethanesulfonates with Tetrabutylammonium Fluoride 395
34.4.2.3 Method 3: Ring-Expansion Reactions of Cyclopropyl Carbinols with Nucleophilic Fluoride 396
34.4.2.3.1 Variation 1: N, N-Diethylaminosulfur Trifluoride Promoted Ring Expansion of a Methylenecyclopropyl Carbinol 396
34.4.2.3.2 Variation 2: Nonafluorobutanesulfonyl Fluoride Promoted Ring Expansion of Methylenecyclopropyl Carbinols 396
34.4.2.4 Method 4: Addition of Halogen Fluorides to Methylenecyclobutane and Cyclobutenes 397
34.4.2.4.1 Variation 1: Addition of Bromine Monofluoride to Methylenecyclobutane 397
34.4.2.4.2 Variation 2: Rearrangement of 2-(Benzyloxycarbonyl)-2-azabicyclo[2.2.0]hex-5-ene in the Presence of Bromine Monofluoride 398
34.4.2.4.3 Variation 3: Addition of Iodine Monofluoride to N-Protected 2-Azabicyclo[2.2.0]hexenes 398
34.4.2.5 Method 5: Synthesis of Fluorocyclobutanes by [2 + 2] Photocycloaddition Reactions 399
34.4.2.5.1 Variation 1: Intramolecular [2 + 2] Photocycloaddition Reactions 400
34.7.4 Allylic Fluorides (Update 2017) 403
34.7.4.1 Method 1: Allylic Substitution of Oxygen-Based Leaving Groups 403
34.7.4.1.1 Variation 1: From Allylic Alcohols 403
34.7.4.1.2 Variation 2: From Allylic Carbonates 404
34.7.4.1.3 Variation 3: From Allylic Esters 406
34.7.4.1.4 Variation 4: From Allylic Imidates 407
34.7.4.2 Method 2: Allylic Substitution of Sulfur-Based Leaving Groups 409
34.7.4.3 Method 3: Allylic Substitution of Silicon-Based Leaving Groups 410
34.7.4.4 Method 4: Allylic Substitution of Halogen Leaving Groups 413
34.7.4.5 Method 5: Ring Opening/Fluorination 416
34.7.4.5.1 Variation 1: From Vinyl Epoxides 416
34.7.4.5.2 Variation 2: From Oxabicyclic Alkenes 417
34.7.4.6 Method 6: Fluorination of Allenes 418
34.7.4.6.1 Variation 1: Carbofluorination 418
34.7.4.6.2 Variation 2: Iodofluorination 420
34.7.4.7 Method 7: Fluorination of Alkenes 421
34.7.4.7.1 Variation 1: Electrophilic Fluorination with Directing Groups 421
34.7.4.7.2 Variation 2: One-Pot Fluoroselenation/Elimination 424
34.7.4.8 Method 8: Fluorination of Vinylic Diazoacetates 424
34.7.4.9 Method 9: One-Pot ?-Fluorination/Wittig-Type Reaction 426
34.7.4.10 Method 10: Fluorination of Allylic C?H Bonds 427
34.9.3 ?-Fluoro Alcohols 431
34.9.3.1 Method 1: Fluorination of Allylic Alcohols 431
34.9.3.2 Method 2: Aldol Reaction of ?-Fluoro Carbonyl Compounds 433
34.9.3.2.1 Variation 1: Enzyme-Catalyzed Aldol Reaction 434
34.9.3.2.2 Variation 2: Decarboxylative Aldol Reaction 435
34.9.3.2.3 Variation 3: Detrifluoroacetylative Aldol Reaction 437
34.9.3.3 Method 3: Synthesis via ?-Fluorination of Carbonyl Compounds 439
34.9.3.1.1 Variation 1: Via Fluorination Using Enamine Catalysis 439
34.9.3.1.2 Variation 2: Via Fluorination of Active Methine Compounds 442
34.10.5 ?-Fluoroamines (Update 2017) 447
34.10.5.1 Method 1: Reduction of ?-Fluoro Azides 448
34.10.5.2 Method 2: N-Substitution of a Leaving Group ? to Fluorine 449
34.10.5.3 Method 3: Ring Opening of Aziridines with Hydrogen Fluoride Equivalents 450
34.10.5.3.1 Variation 1: Ring Opening of Aziridines with the Fluoride Ion 452
34.10.5.4 Method 4: Ring Opening of Cyclic Sulfamates with the Fluoride Ion 452
34.10.5.5 Method 5: C?H Activation and Fluorination of Alkylamines 453
34.10.5.5.1 Variation 1: Photocatalytic C?H Activation and Fluorination 454
34.10.5.6 Method 6: Electrophilic Fluorination of Enamines and Related Substrates 455
34.10.5.7 Method 7: Fluoroalkylation of Imines 457
34.10.5.8 Method 8: Electrophilic Fluorination of ?-Amino Carbonyl Compounds 460
34.10.5.9 Method 9: Reductive Amination of ?-Fluoro Carbonyl Compounds 461
34.10.5.9.1 Variation 1: Nucleophilic Addition to ?-Fluorinated Imine Derivatives 462
34.10.5.10 Method 10: Fluorination of Allylic Amines 463
34.10.5.10.1 Variation 1: Electrophilic Fluorination of Allylic Amines 464
34.10.5.11 Method 11: Addition of an N-Nucleophile to a Fluoroalkene 466
34.10.5.12 Method 12: Aminofluorination of Alkenes 467
34.10.5.12.1 Variation 1: Aminofluorination of Unactivated Alkenes 469
34.10.5.13 Method 13: Decarboxylative Fluorination 472
34.10.5.14 Method 14: Reduction of an Unsaturated ?-Fluoroamine Precursor 473
34.10.5.15 Method 15: 1,3-Dipolar Cycloadditions 474
34.10.5.16 Method 16: Fluorocyclopropanation of an Unsaturated Amine 474
40.1.6.2 Azetidines (Update 2017) 479
40.1.6.2.1 Ring-Closure Reactions 479
40.1.6.2.1.1 Method 1: Ring Closure of Amines and 1,3-Functionalized Hydrocarbons 480
40.1.6.2.1.1.1 Variation 1: From Amines and 1,3-Dihalo Compounds 480
40.1.6.2.1.1.2 Variation 2: From Amines and 1,3-Diol Derivatives 481
40.1.6.2.1.2 Method 2: Organocatalyzed [2 + 2] Cycloaddition of Imines and Alkenes 482
40.1.6.2.1.3 Method 3: Ring Closure of Acyclic Amines 483
40.1.6.2.1.3.1 Variation 1: Ring Closure of ?-Haloamines 483
40.1.6.2.1.3.2 Variation 2: Ring Closure of ?-Hydroxy Amines and Derivatives 484
40.1.6.2.1.3.3 Variation 3: Ring Closure of ?-Alkenylamines 488
40.1.6.2.1.3.4 Variation 4: Ring Closure of ?,?-Epoxyamines 489
40.1.6.2.1.3.5 Variation 5: Ring Closure of ?,?-Epoxyamines 490
40.1.6.2.1.3.6 Variation 6: Ring Closure of N-(Aziridin-2-ylmethyl) amines 490
40.1.6.2.1.3.7 Variation 7: Ring Closure of ?-Amino Sulfonium Ions 491
40.1.6.2.1.3.8 Variation 8: Ring Closure of ?-Amino Selenones 492
40.1.6.2.1.3.9 Variation 9: Ring Closure of ?-Alkenylamines 493
40.1.6.2.1.4 Method 4: Ring Closure of Acyclic Imines 494
40.1.6.2.1.5 Method 5: Ring Closure of Stabilized Carbanions (C?C Bond Formation) 495
40.1.6.2.1.5.1 Variation 1: Intramolecular Alkylation of ?-Amino Halides 495
40.1.6.2.1.5.2 Variation 2: Intramolecular Alkylation of 2-(Aminomethyl) oxiranes 497
40.1.6.2.2 Reduction of Four-Membered Ring Compounds 498
40.1.6.2.2.1 Method 1: Reduction of Azetidin-2-ones (?-Lactams) 498
40.1.6.2.2.2 Method 2: Reduction of Azetes 501
40.1.6.2.3 Ring Transformation Reactions 502
40.1.6.2.3.1 Method 1: Ring Expansion of Three-Membered Rings 502
40.1.6.2.3.2 Method 2: Ring Contraction of Five-Membered Rings 504
40.1.6.2.3.3 Method 3: Substitution at Ring Carbons 505
40.1.6.2.3.4 Method 4: Substitution at the Ring Nitrogen 506
40.1.6.2.3.5 Method 5: Resolution of Racemic Azetidines 507
40.1.6.2.4 Miscellaneous Reactions 508
Author Index 513
Abbreviations 541

Abstracts


17.9.24 Phthalocyanines and Related Compounds


M. S. Rodríguez-Morgade and T. Torres

This review updates the original Science of Synthesis chapter (Section 17.9) on phthalocyanines and various ring-fused, ring-contracted, and ring-expanded analogues. It adds some recently published methods, examples, and variations on the synthesis of unsubstituted phthalocyanines and metal phthalocyanines, as well as identically and nonidentically substituted phthalocyanine derivatives. Besides peripheral substitution, axial functionalization is also discussed, but attention is focused only on those methods that represent appreciable progress for a particular type of metal coordination and axial functionalization, provide phthalocyanines with specific features such as chirality, or allow the functionalization of phthalocyanines with entities that are difficult to introduce at the peripheral sites. This account also includes sections on new types of phthalocyanine derivatives and analogues that were not covered in the original chapter, as well as the progress made in the synthesis of some of these families in the decade since 2003.

Keywords: phthalocyanines • phthalocyanine–metal complexes • porphyrazines • tetraazaporphyrins • naphthalocyanines • phenanthrenocyanines • triphenylenocyanines • anthracenocyanines • pyrenocyanines • benzoperylenocyanines • helicenocyanines • azulenocyanines • tetraazachlorins • tetraazabacteriochlorins • azaphthalocyanines • triazacorroles • subphthalocyanines • subporphyrazines • superazaporphyrins • pyrenocyanines • phthalonitriles • phthalic anhydrides • phthalic acids • phthalimides • isoindolinediimines • condensation reactions • substituent modification • ligand substitution

34.1.1.8 Synthesis of Fluoroalkanes by Substitution of Hydrogen


M. Rueda-Becerril and G. M. Sammis

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.1.1) describing methods for the synthesis of fluoroalkanes by substitution of hydrogen. The increasing importance of fluorine-containing molecules in the health, pharmaceutical, and agrochemical sectors has resulted in the rapid development of more-selective, morecontrolled, and safer methods for the insertion of a fluorine atom into structurally diverse molecules. Herein, the most synthetically useful methods reported from 2006 until mid-2016 to achieve such transformations are described.

Keywords: fluorination • hydrogen substitution • alkanes • cycloalkanes • fluorine compounds • fluorine transfer • Selectfluor • photocatalysis • organometallic reagents

34.1.4.1 Synthesis of Fluoroalkanes by Substitution of a Halogen


T. P. Lequeux

This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of fluoroalkanes by substitution of a halogen atom. It includes additional methods published up until 2016. Newer approaches involve the use of fluoride complex reagents and the use of solvent effects to avoid competitive elimination reactions.

Keywords: fluoroalkanes • nucleophilic substitution • fluorides • halides • alkanes • cycloalkanes • nucleosides • amines • steroids • ammonium compounds • copper complexes

34.1.4.3 Synthesis of Fluoroalkanes by Substitution of Oxygen and Sulfur Functionalities


T. P. Lequeux

This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of fluoroalkanes by substitution of oxygen and sulfur functionalities. It now includes the literature published up until 2016. The additional material focuses on new reagents and their applications. For example, the effect of an ionic liquid on the rate of the displacement of sulfonates by cesium fluoride, and expeditious synthesis of nucleoside derivatives are described.

Keywords: fluoroalkanes • nucleophilic substitution • fluorides • sulfonates • alkanes • cycloalkanes • pyrans • nucleosides • carbohydrates • steroids • sulfur compounds • copper complexes

34.1.6.4 Synthesis of Fluoroalkanes with Retention of the Functional Group


T. Yamazaki

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.1.6) describing methods for the synthesis of monofluorinated compounds with a C(sp3)─F bond by way of a wide variety of transformations of molecules already bearing the key C─F bond. The focus is on methods published in the period 2005–2015.

Keywords: alkylation • crossed aldol reactions • conjugate addition • SN2′ reactions • hydrogenation • reduction • cycloadditions • iodolactonization

34.2.2 Fluorocyclopropanes


P. Jubault, T. Poisson, and X. Pannecoucke

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.2) describing methods for the synthesis of fluorocyclopropanes. The most important breakthrough described in this update is the development of asymmetric syntheses of fluorocyclopropanes based on various approaches, such as the use of chiral fluorinated scaffolds or the development of catalytic enantioselective sequences. This review focuses on the contributions published between 2005 and 2016.

Keywords: fluorocyclopropanes • cyclopropanes • fluorine compounds • conjugate addition • carbenoids • diazo compounds • asymmetric catalysis • alkenes

34.3.2 (Fluoromethyl) cyclopropanes


P. Jubault, T. Poisson, and X. Pannecoucke

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.3) describing methods for the synthesis of (fluoromethyl) cyclopropanes. In this review, new methods, published since 2006, by means of direct or two-step fluorodehydroxylation and by rearrangement of fluoroepoxides are described.

Keywords: (fluoromethyl) cyclopropanes • cyclopropanes • fluorine compounds • nucleophilic fluorination • carbenoids • rearrangement

34.4.2 Fluorocyclobutanes


T. Poisson, P. Jubault, and X. Pannecoucke

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.4) describing methods for the synthesis of fluorocyclobutanes. In this review, progress made in the field since 2006 is reported. The use of cycloaddition reactions as well as rearrangement reactions to access the fluorocyclobutane motif are significant advances in this area.

Keywords: fluorocyclobutanes • cyclobutanes • fluorine compounds • nucleophilic fluorination • [2 + 2] cycloaddition • rearrangement

34.7.4 Allylic Fluorides


C. R. Pitts and T. Lectka

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.7) regarding the synthesis of allylic monofluorides. Herein, literature from 2005–2015 is discussed. Advancements during this time period include the employment of milder fluorinating reagents, methods that favor alkene migration or retention, tactics for catalytic and asymmetric reactions, and the introduction of a creative array of functional-group interconversions.

Keywords: fluorination • halogenation • allylic fluorides • carbon─halogen bonds • allylic substitution • electrophilic fluorination • nucleophilic fluorination • asymmetric fluorination • regioselectivity

34.9.3 β-Fluoro Alcohols


K. Shibatomi

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.9) describing methods for the synthesis of β-fluoro alcohols. It focuses on enantioselective synthetic approaches, and includes methods based on the α-fluorination of carbonyl compounds and subsequent reduction.

Keywords: β-fluoro alcohols • fluorine compounds • asymmetric fluorination • decarboxylation • decarbonylation • aldol reaction • reduction • enantioselectivity • Lewis acid catalysts • chiral amine catalysts

34.10.5 β-Fluoroamines


L. Hunter

This chapter is an update to the earlier Science of Synthesis contribution (Section 34.10) describing methods for the synthesis of β-fluoroamines. This topic has continued to attract signficant attention from the synthetic community, largely due to the medicinal importance of this class of compounds. A wide variety of new methods have been developed, and this review focuses on examples that were published between 2005 and 2015.

Keywords: aminofluorination • carbon─fluorine bonds • electrophilic fluorination • nucleophilic fluorination • radical fluorination • stereoselective reactions

40.1.6.2...


Erscheint lt. Verlag 12.7.2017
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Schlagworte Organic Chemistry • organic reaction • organic synthesis • Organische Chemie • Reaction • reference work • Referenzwerk • Review • Synthese • synthesis
ISBN-10 3-13-241416-6 / 3132414166
ISBN-13 978-3-13-241416-7 / 9783132414167
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 12,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99