Adsorption Processes for Water Treatment and Purification (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XIV, 256 Seiten
Springer International Publishing (Verlag)
978-3-319-58136-1 (ISBN)

Lese- und Medienproben

Adsorption Processes for Water Treatment and Purification -
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides researchers and graduate students with an overview of the latest developments in and applications of adsorption processes for water treatment and purification. In particular, it covers current topics in connection with the modeling and design of adsorption processes, and the synthesis and application of cost-effective adsorbents for the removal of relevant aquatic pollutants. The book describes recent advances and alternatives to improve the performance and efficacy of this water purification technique. In addition, selected chapters are devoted to discussing the reliable modeling and analysis of adsorption data, which are relevant for real-life applications to industrial effluents and groundwater.



Prof. Dr. Adrián Bonilla-Petriciolet is currently Professor in the Department of Chemical Engineering at Instituto Tecnologico de Aguascalientes, Mexico, since 2001. He has worked as a visiting researcher at the Texas A&M University, USA, in 2003 and National University of Singapore, Singapore, in 2010. He has published more than 90 papers in international journals, 15 book chapters and several refereed conference proceedings in the broad areas of adsorption engineering and optimization, process modelling and applied thermodynamics. His research interests include process engineering, modelling and optimization of adsorption processes for water treatment. Prof. Bonilla-Petriciolet co-edited two books (one on multi-objective optimization and another on activated carbon for wastewater treatment) published by John Wiley and INTECH.

Prof. Dr. Didilia Ileana Mendoza-Castillo works as a faculty member in the Chemical Engineering Department from Instituto Tecnologico de Aguascalientes, Mexico, since 2014. Dr. Mendoza-Castillo has done research stays at National Accelerator Laboratory from Stanford University (USA, 2009), at Dept. of Chemical & Biomolecular Engineering from National University of Singapore (Singapore, 2011) and at the Laboratory of Advanced Materials from Universidad de Alicante (Spain, 2014). Her research interests include the removal of priority pollutants (e.g., heavy metals, dyes, fluoride, arsenic and antibiotics) in liquid phase, the synthesis of carbon-based adsorbents, and the design, optimization and modeling of adsorption processes.

Prof. Dr. Hilda Elizabeth Reynel-Avila is currently research fellow in the Chemical Engineering Department at Instituto Tecnologico de Aguascalientes, Mexico, since 2015. She has experience in the development and implementation of separation processes with emphasis on the generation, modification and characterization of materials and the modeling and intensification of environmental remediation processes. She has done research stays at the Stanford Synchrotron Radiation Lightsource in the National Accelerator Laboratory from Stanford University (USA, 2009) and the Laboratory of Advanced Materials from Universidad de Alicante (Spain, 2014).

Prof. Dr. Adrián Bonilla-Petriciolet is currently Professor in the Department of Chemical Engineering at Instituto Tecnologico de Aguascalientes, Mexico, since 2001. He has worked as a visiting researcher at the Texas A&M University, USA, in 2003 and National University of Singapore, Singapore, in 2010. He has published more than 90 papers in international journals, 15 book chapters and several refereed conference proceedings in the broad areas of adsorption engineering and optimization, process modelling and applied thermodynamics. His research interests include process engineering, modelling and optimization of adsorption processes for water treatment. Prof. Bonilla-Petriciolet co-edited two books (one on multi-objective optimization and another on activated carbon for wastewater treatment) published by John Wiley and INTECH.Prof. Dr. Didilia Ileana Mendoza-Castillo works as a faculty member in the Chemical Engineering Department from Instituto Tecnologico de Aguascalientes, Mexico, since 2014. Dr. Mendoza-Castillo has done research stays at National Accelerator Laboratory from Stanford University (USA, 2009), at Dept. of Chemical & Biomolecular Engineering from National University of Singapore (Singapore, 2011) and at the Laboratory of Advanced Materials from Universidad de Alicante (Spain, 2014). Her research interests include the removal of priority pollutants (e.g., heavy metals, dyes, fluoride, arsenic and antibiotics) in liquid phase, the synthesis of carbon-based adsorbents, and the design, optimization and modeling of adsorption processes. Prof. Dr. Hilda Elizabeth Reynel-Avila is currently research fellow in the Chemical Engineering Department at Instituto Tecnologico de Aguascalientes, Mexico, since 2015. She has experience in the development and implementation of separation processes with emphasis on the generation, modification and characterization of materials and the modeling and intensification of environmental remediation processes. She has done research stays at the Stanford Synchrotron Radiation Lightsource in the National Accelerator Laboratory from Stanford University (USA, 2009) and the Laboratory of Advanced Materials from Universidad de Alicante (Spain, 2014).

Preface 5
Contents 6
Contributors 11
Chapter 1: Introduction 13
1.1 Adsorption: A Cost-Effective Technology for Water Treatment 14
1.2 Priority Pollutants in Water Purification 16
1.2.1 Heavy Metals 17
1.2.2 Dyes 17
1.2.3 Pharmaceuticals 18
1.2.4 Fluoride 18
1.2.5 Arsenic 19
1.2.6 Emerging Pollutants 19
1.3 Adsorption Process Intensification 20
1.3.1 Synthesis of Tailored Adsorbents 20
1.3.2 Optimization and Design of Adsorption Systems 21
1.3.3 Modeling of Adsorption Processes 22
1.3.4 Regeneration and Final Disposal of Exhausted Adsorbents 23
1.3.5 Life Cycle Analysis 24
1.4 Scope and Outline of Chapters 25
References 26
2: Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations 31
2.1 Introduction 32
2.2 Experimental Procedures to Obtain Equilibrium Curves 37
2.3 Classification of the Equilibrium Isotherms 38
2.3.1 Subclasses 41
2.4 Adsorption Isotherm Models 42
2.4.1 Henry´s Law 42
2.4.2 Monolayer Adsorption and the Langmuir Isotherm 42
2.4.3 Multilayer Adsorption and the BET Isotherm 44
2.4.4 Other Isotherm Models 44
2.4.4.1 Temkin Isotherm 44
2.4.4.2 Freundlich Isotherm 44
2.4.4.3 Dubinin-Radushkevich (D-R) Isotherm 45
2.4.4.4 Redlich-Peterson (R-P) Model 45
2.4.5 Statistical Physics Models 46
2.4.6 Typical Values of Isotherm Parameters for Different Adsorbate-Adsorbent Systems 47
2.5 Regression Methods and Error Analysis 52
2.5.1 Model Accuracy 53
2.5.2 Comparison Between Linear and Nonlinear Regression Methods 54
2.6 Adsorption Thermodynamics 57
2.7 Concluding Remarks 59
References 60
Chapter 3: Adsorption Kinetics in Liquid Phase: Modeling for Discontinuous and Continuous Systems 64
3.1 Introduction 65
3.2 Adsorption Kinetics in Discontinuous Batch Systems 66
3.2.1 Diffusional Mass Transfer Models 66
3.2.2 Adsorption Reaction Models 71
3.2.2.1 Pseudo-First-Order Model 71
3.2.2.2 Pseudo-Second-Order Model 71
3.2.2.3 Elovich Model 73
3.3 Fixed-Bed Adsorption 73
3.3.1 Mass Balance and Modeling of the Breakthrough Curves Based on Mass Transfer Mechanism 75
3.3.2 Empirical Models for Breakthrough Curves 76
3.3.2.1 Bohart-Adams Model 77
3.3.2.2 Thomas Model 77
3.3.2.3 Wolborska Model 77
3.3.2.4 Yoon-Nelson Model 78
3.3.3 Design of Fixed-Bed Adsorption Systems 78
3.3.3.1 LUB Concept 79
3.3.3.2 Bed Depth Service Time (BDST) 79
3.4 Numerical Methods and Parameters Estimation 80
3.4.1 Solving Diffusional Mass Transfer Models 81
3.4.2 Solving Adsorption Reaction Models and Empirical Models for Breakthrough Curves 83
3.5 Conclusion 84
References 85
4: Hydrothermal Carbonisation: An Eco-Friendly Method for the Production of Carbon Adsorbents 88
4.1 Introduction 89
4.2 Hydrothermal Carbon Preparation 90
4.2.1 Precursors 90
4.2.2 Hydrothermal Process 92
4.2.3 Templates 96
4.2.4 Coating 97
4.2.5 Activation 97
4.2.5.1 Chemical Activation 98
4.2.5.2 Physical and Thermal Activation 98
4.2.6 Functionalisation 99
4.2.6.1 Functionalisation During the Hydrothermal Process (One Step) 100
4.2.6.2 Post-functionalisation (Two Steps) 100
4.2.7 Hydrothermal Versus Pyrolytic Carbonisation 102
4.3 Adsorption 103
4.3.1 Dye Adsorption 104
4.3.2 Pesticides 105
4.3.3 Drugs 106
4.3.4 Endocrine Disrupting Chemicals 106
4.3.5 Metal Ions 107
4.3.5.1 p-Block and d-Block Metals 108
4.3.5.2 f-Block Metals 110
4.3.5.3 Mixture of Metals 114
4.3.6 Phosphorus 114
4.3.7 Phenols 115
4.3.8 Wastewater 115
4.3.9 Reusability 115
4.4 Conclusions 116
References 116
5: Removal of Heavy Metals, Lead, Cadmium, and Zinc, Using Adsorption Processes by Cost-Effective Adsorbents 120
5.1 Introduction 121
5.2 Adsorption Process 123
5.2.1 Equilibrium Adsorption Isotherm 123
5.2.1.1 The Langmuir Model 124
5.2.1.2 The Freundlich Model 124
5.2.1.3 The Redlich-Peterson Model 125
5.2.1.4 The Sips (Langmuir-Freundlich) Model 125
5.2.2 Kinetic Studies and Models 126
5.2.2.1 The Pseudo-First-Order Model 126
5.2.2.2 The Pseudo-Second-Order Model 127
5.3 Low-Cost Adsorbent Materials and Metal Adsorption 128
5.3.1 Agricultural Waste 128
5.3.2 Industrial By-Products and Wastes 133
5.3.3 Marine Materials 135
5.3.4 Zeolite and Clay 137
5.4 Conclusion 143
References 143
Chapter 6: Removal of Antibiotics from Water by Adsorption/Biosorption on Adsorbents from Different Raw Materials 150
6.1 Introduction 151
6.2 Adsorbent Materials 154
6.2.1 Commercial Activated Carbons 154
6.2.2 Sludge-Derived Materials 155
6.2.2.1 Preparation of Adsorbent Materials from Sludge 156
6.2.2.2 Optimization of Sludge Activation Process 156
Optimization of Sludge Activation Process Without Binder (Linear Model) 156
Optimization of Sludge Activation Process with Binder (Orthogonal Model) 158
6.2.2.3 Characterization of Sludge-Derived Adsorbent Materials 160
Textural Characterization of Adsorbents with Humic Acid as Binding Agent 160
Influence of Binding Agent on Properties of the Adsorbent Materials 162
6.2.3 Activated Carbons from Petroleum Coke 164
6.2.3.1 Preparation of Activated Carbons by Chemical Activation of Coke 164
6.2.3.2 Characterization of Activated Carbons from Coke 166
6.3 Kinetic Study of the Adsorption of Tetracyclines and Nitroimidazoles on Sludge-Derived Materials and Activated Carbons 168
6.3.1 Tetracyclines and Nitroimidazoles Characterization 168
6.3.1.1 Tetracyclines 168
6.3.1.2 Nitroimidazoles 168
6.3.2 Kinetic and Diffusional Models 169
6.3.2.1 Pseudo First-Order Kinetic Model 172
6.3.2.2 Pseudo Second-Order Kinetic Model 173
6.3.2.3 Intraparticle Diffusion Model 173
6.3.2.4 Surface and Pore Volume Diffusion Model 174
6.3.3 Results and Discussion 175
6.3.3.1 Kinetic Study of Tetracycline Adsorption on Sludge-Derived Adsorbents 175
6.3.3.2 Diffusion of Tetracyclines on Activated Carbon 182
6.3.3.3 Adsorption Kinetics of Nitroimidazoles on Activated Carbons 184
6.4 Adsorption/Biosorption Equilibrium Isotherms of Tetracyclines and Nitroimidazoles on Sludge-Derived Materials and Activate... 191
6.4.1 Nitroimidazole Adsorption Processes 191
6.4.2 Tetracyclines Adsorption Isotherms 194
6.4.3 Influence of Operational Variables 196
6.4.3.1 Influence of Solution pH 196
6.4.3.2 Influence of Solution Ionic Strength 199
6.4.3.3 Influence of the Presence of Microorganisms 199
6.5 Adsorption of Tetracyclines and Nitroimidazoles on Sludge-Derived Materials and Activated Carbons in Dynamic Regime. Deter... 204
6.6 Conclusions 207
References 209
7: Biosorption of Copper by Saccharomyces cerevisiae: From Biomass Characterization to Process Development 216
7.1 Introduction 217
7.2 Materials and Methods 219
7.2.1 Yeast Strain 219
7.2.2 Potentiometric Titration 219
7.2.3 Immobilization into Calcium Alginate 219
7.2.4 Batch Biosorption 220
7.2.5 Fixed-Bed Biosorption 220
7.3 Results 221
7.3.1 Identification of the Biomass Active Sites 221
7.3.2 Biosorption by Calcium Alginate Beads Under Batch Operation 224
7.3.2.1 Biosorption Isotherms 224
7.3.2.2 Biosorption Under Batch Operation 226
7.3.3 Biosorption Under Fixed-Bed Operation 229
7.4 Conclusions 233
References 234
8: Transition Metal-Substituted Magnetite as an Innovative Adsorbent and Heterogeneous Catalyst for Wastewater Treatment 236
8.1 Introduction 237
8.2 Transition Metal-Substituted Magnetite 239
8.3 Physicochemical Changes in Modified Magnetite 240
8.4 Adsorption 241
8.5 Oxidation Process 249
8.6 Conclusions 251
References 255
Index 259

Erscheint lt. Verlag 3.7.2017
Zusatzinfo XIV, 256 p. 57 illus., 19 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Environmental Engineering • Hybrid adsorption processes • Multicomponent adsorption for water treatment • Novel adsorbents for water treatment • Process Engineering • water industry and water technology • Water pollution control • Water Quality and Water Pollution • Water Treatment
ISBN-10 3-319-58136-8 / 3319581368
ISBN-13 978-3-319-58136-1 / 9783319581361
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich