Biohydrogen Production from Organic Wastes -  Jianlong Wang,  Yanan Yin

Biohydrogen Production from Organic Wastes (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XIII, 433 Seiten
Springer Singapore (Verlag)
978-981-10-4675-9 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.

Prof. Jianlong Wang is professor and deputy president of the Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing. Prof. Wang received his Ph. D. degree from Harbin Institute of Technology in 1993. He is awarded Cheung Kong Professor, and recipient of National Outstanding Young Scholars Foundation in 2003. His research has been focused on water pollution control, environmental bio-technology and new energy. Prof. Wang has published more than 400 peer-reviewed journal articles with more than 8000 citations, more than 10 books in Chinese and English. He was also granted more than 40 patents in China.

Dr. Ya'nan Yin is currently post-doctorate researcher at Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing. She received her Ph. D. degree in Environmental Engineering from Tsinghua University in 2016. Her research is focused on the environmental protection and new energy, such as bio-hydrogen production from different kinds of organic wastes. She has published more than 10 peer-reviewed journal papers.


This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.

Prof. Jianlong Wang is professor and deputy president of the Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing. Prof. Wang received his Ph. D. degree from Harbin Institute of Technology in 1993. He is awarded Cheung Kong Professor, and recipient of National Outstanding Young Scholars Foundation in 2003. His research has been focused on water pollution control, environmental bio-technology and new energy. Prof. Wang has published more than 400 peer-reviewed journal articles with more than 8000 citations, more than 10 books in Chinese and English. He was also granted more than 40 patents in China.Dr. Ya'nan Yin is currently post-doctorate researcher at Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing. She received her Ph. D. degree in Environmental Engineering from Tsinghua University in 2016. Her research is focused on the environmental protection and new energy, such as bio-hydrogen production from different kinds of organic wastes. She has published more than 10 peer-reviewed journal papers.

Preface 6
Contents 8
About the Authors 14
1 Introduction 15
1.1 Global Energy Development 15
1.2 Hydrogen Energy 17
1.3 Hydrogen Production 18
1.3.1 Steam Reforming 19
1.3.2 Electrolysis 19
1.3.3 Thermal Chemical 20
1.3.4 Biological 20
1.3.4.1 Biophotolysis 20
1.3.4.2 Photofermentation 22
1.3.4.3 Dark Fermentation 24
1.3.4.4 Microbial Electrolysis 24
1.3.4.5 Combined Systems for Biohyrogen Production 26
1.4 Overview of This Book 29
References 30
2 Microbiology and Enzymology 32
2.1 Microorganisms in Hydrogen-Producing System 32
2.1.1 Overview 32
2.1.2 Microbial Diversity in Hydrogen-Producing System 33
2.2 Inocula for Dark Fermentation 33
2.2.1 Mixed Culture 34
2.2.2 Pure Culture 35
2.3 Pure Culture for Hydrogen Production 38
2.3.1 Clostridium butyricum INET1 38
2.3.1.1 Isolation and Identification of Strain 38
2.3.1.2 Characteristics of Hydrogen Production 40
2.3.1.3 Optimization of Fermentative Conditions 41
2.3.1.4 Hydrogen Production from Different Substrates 43
2.3.2 Enterococcus faecium INET2 47
2.3.2.1 Isolation of Strain 47
2.3.2.2 Identification of Strain and Phylogenetic Analysis 48
2.3.2.3 Batch Fermentation for Hydrogen Production 50
2.3.2.4 Effect of Fermentative Parameters on Hydrogen Production 50
2.3.2.5 Hydrogen Production at Optimized Condition 56
2.3.2.6 Immobilization of Enterococcus Faecium INET2 58
2.4 Biochemistry of Hydrogen Production 59
2.4.1 Metabolic Pathways 59
2.4.2 Fermentation Types 61
2.4.2.1 Butyrate-Type Fermentation 61
2.4.2.2 Propionate-Type Fermentation 62
2.4.2.3 Ethanol-Type Fermentation 62
2.4.2.4 Mixed-Type Fermentation 62
2.5 Enzymology of Hydrogen Production 62
2.5.1 Classification of Hydrogenase 63
2.5.1.1 [Fe]-Hydrogenases 64
2.5.1.2 [NiFe]-Hydrogenases 64
2.5.1.3 [FeFe]-Hydrogenases 67
2.5.2 Genetic Modification of Hydrogenase 67
2.5.2.1 Deletion of Hydrogen-Uptake Hydrogenase 68
2.5.2.2 Genetic Insertion of an Enzyme to Facilitate Hydrogenase 68
2.5.2.3 Oxygen Tolerance of Hydrogenase 68
2.5.3 Environmental Applications of Hydrogenase 68
2.6 Microbial Modification 69
2.6.1 Co-cultivation 69
2.6.1.1 Maintaining an Anaerobic Environment by Depleting Oxygen 70
2.6.1.2 Breakdown of Complex Organic Substrates 70
2.6.2 Microbial Immobilization 71
2.6.3 Metabolic Engineering 72
References 74
3 Enrichment of Hydrogen-Producing Microorganisms 81
3.1 Overview 81
3.2 Heat Treatment 82
3.3 Acid/Alkaline Treatment 86
3.4 Chemical Inhibitors 88
3.5 Aeration 88
3.6 Other Treatments 90
3.6.1 Ultrasonication 90
3.6.2 Freezing and Thawing 92
3.6.3 Electric Treatment 93
3.6.4 Microwave Treatment 95
3.6.5 Ionizing Radiation Treatment 97
3.6.6 Ultraviolet (UV) Radiation 98
3.6.7 Load-Shock Treatment 98
3.6.8 Operational Condition Control 98
3.7 Combined Treatments 99
3.8 Effect of Pretreatment Methods on Microbial Community 101
3.9 Comparison of Different Pretreatment Methods 103
3.10 Gamma Irradiation for Enriching Hydrogen-Producer 105
3.10.1 Overview 105
3.10.2 Effect of Dose on Hydrogen Production 106
3.10.3 Effect of Dose on Substrate Degradation and Hydrogen Yield 108
3.10.4 Effect of Dose OnVolatile Fatty Acids 109
3.10.5 Conclusions 111
3.11 Hydrogen Production Performance by Different Pretreated Sludge 112
3.11.1 Effect on Hydrogen Production 112
3.11.2 Effect on Substrate Degradation and Hydrogen Yield 114
3.11.3 Effect on Volatile Fatty Acids and Final pH 116
3.12 Changes in Microbial Community During Biohydrogen Production 119
3.12.1 Seed Sludge and Fermentation Conditions 119
3.12.2 DNA Extraction and PCR Amplification 119
3.12.3 MiSeq Sequencing and Data Analysis 119
3.12.4 Hydrogen Production Progress 120
3.12.5 Microbial Diversity Characteristics 121
3.12.6 Microbial Diversity at Different Stages 123
References 125
4 Pretreatment of Organic Wastes for Hydrogen Production 134
4.1 Overview 134
4.2 Main Structural Components of Organic Wastes 135
4.3 Types and Compositions of Organic Wastes 135
4.3.1 Waste Activated Sludge 138
4.3.2 Algal Biomass 139
4.3.3 Cellulose-Based Biomass 142
4.3.4 Starch-Based Biomass 145
4.3.5 Food Waste 145
4.3.6 Wastewater 147
4.4 Pretreatment of Organic Wastes 149
4.4.1 Physical Treatment 149
4.4.1.1 Mechanical Treatment 149
4.4.1.2 Heat Treatment 149
4.4.1.3 Freeze and Thaw 151
4.4.1.4 Electric Current 151
4.4.1.5 Radiation 152
4.4.2 Chemical Treatment 156
4.4.2.1 Acid and Base Treatment 156
4.4.2.2 Oxidizing Agent 157
4.4.2.3 Methanogenic Inhibitors 158
4.4.3 Biological Treatment 158
4.4.4 Combined Treatment 159
4.4.5 Comparison of Different Treatment Methods 160
4.5 Hydrogen Production from Organic Wastes 163
4.5.1 Hydrogen Production from Waste Activated Sludge 163
4.5.2 Hydrogen Production from Algal Biomass 163
4.5.3 Hydrogen Production from Cellulose-Based Biomass 176
4.5.4 Hydrogen Production from Starch-Based Biomass 186
4.5.5 Hydrogen Production from Food Wastes 186
4.5.6 Hydrogen Production from Wastewater 188
4.6 Concluding Remarks and Perspectives 192
References 194
5 Influencing Factors for Biohydrogen Production 207
5.1 Introduction 207
5.2 Effect of Inoculum 208
5.2.1 Pure Cultures 208
5.2.2 Mixed Cultures 208
5.3 Effect of Substrate 213
5.3.1 Overview 213
5.3.2 Effect on Substrate Degradation Efficiency 218
5.3.3 Effect on Hydrogen Production 219
5.3.4 Effect on Hydrogen Production Rate 220
5.3.5 Effect on Soluble Metabolites Distribution 221
5.3.6 Effect on Final pH 222
5.4 Effect of Reactor Type 223
5.5 Effect of Nitrogen and Phosphate 226
5.5.1 Overview 226
5.5.2 Effect of Ammonia Concentration 229
5.5.2.1 Kinetic Models 229
5.5.2.2 Effect on Substrate Degradation Efficiency 230
5.5.2.3 Effect on Hydrogen Production 231
5.5.2.4 Effect on Soluble Metabolites Distribution 233
5.5.2.5 Comparison of Optimal Ammonia Concentration 233
5.5.3 Effect of Nitrate Concentration 234
5.5.3.1 Effect on Substrate Degradation Efficiency 234
5.5.3.2 Effect on Hydrogen Production 235
5.5.3.3 Effect on Soluble Metabolites Distribution 237
5.5.3.4 Effect on Final pH and Biomass Concentration 237
5.6 Effect of Trace Heavy Metal Ion 239
5.6.1 Importance of Heavy Metal Ions 239
5.6.2 Effect of Fe2+ 242
5.6.2.1 Overview 242
5.6.2.2 Effect on Hydrogen Production 242
5.6.2.3 Effect on Soluble Metabolite Yield 244
5.6.2.4 Effect on Substrate Conversion Rate and Biomass Yield 244
5.6.2.5 Effect on Final pH 246
5.6.3 Effect of Mg2+ 246
5.6.3.1 Overview 246
5.6.3.2 Effect on Hydrogen Production 246
5.6.3.3 Effect on Soluble Metabolites Distribution 250
5.6.3.4 Effect on Substrate Degradation Efficiency 250
5.6.3.5 Effect on Biomass Yield 250
5.6.3.6 Effect on Final pH 251
5.6.4 Influence of Ni2+ 252
5.6.4.1 Overview 252
5.6.4.2 Effect on Hydrogen Production 253
5.6.4.3 Effect on Soluble Metabolite Yield 254
5.6.4.4 Effect on Substrate Degradation Efficiency 254
5.6.4.5 Effect on Biomass Yield 255
5.6.4.6 Effect on Final pH 255
5.7 Effect of Temperature 256
5.7.1 Overview 256
5.7.2 Effect on Substrate Degradation Efficiency 256
5.7.3 Effect on Hydrogen Production 256
5.7.4 Effect on Soluble Metabolites Concentration 262
5.7.5 Effect on Biomass Concentration 262
5.7.6 Effect on Final pH 262
5.8 Effect of pH 263
5.8.1 Overview 263
5.8.2 Effect on Substrate Degradation Efficiency 265
5.8.3 Effect on Hydrogen Production 267
5.8.4 Effect on Hydrogen Production Rate 268
5.8.5 Effect on Soluble Metabolites Distribution 269
5.8.6 Effect on Final pH 270
5.8.7 Comparison of the Optimal Initial pH 270
References 271
6 Kinetic Models for Hydrogen Production 279
6.1 Introduction 280
6.2 The Progress of Hydrogen Production Process 281
6.3 The Effect of Substrate Concentration on Hydrogen Production 285
6.4 The Effect of Inhibitor Concentration on Hydrogen Production 289
6.5 The Effect of Temperature on Hydrogen Production 290
6.6 The Effects of pH on Hydrogen Production 293
6.7 The Effect of Dilution Rate on Hydrogen Production 293
6.8 The Relationship Among Substrate Degradation Rate, HPB Growth and Product Formation 295
6.9 Conclusions 297
References 297
7 Optimization of Hydrogen Production Process 301
7.1 Overview 301
7.2 One-Factor-at-a-Time Design 302
7.3 Factorial Design 305
7.3.1 Full Factorial Design 305
7.3.2 Fractional Factorial Design 306
7.3.2.1 Taguchi Design 309
7.3.2.2 Plackett–Burman Design 309
7.3.2.3 Method of Steepest Ascent 310
7.3.2.4 Central Composite Design and Box–Behnken Design 311
7.3.2.5 Neural Network and Genetic Algorithm 313
7.3.2.6 Multiple-Response Optimization 314
7.4 Recommended Experimental Design Strategy 315
7.5 Software Packages for Factorial Design and Analysis 316
7.6 Optimization of Hydrogen Production by RSM 316
7.6.1 Three-Factor Box–Behnken Design and Response Surface Analysis 317
7.6.2 Optimization Using Box–Behnken Design (BBD) 317
7.6.3 Analysis of Variance (ANOVA) 318
7.6.4 Response Surface Analysis 320
7.6.5 Hydrogen Production at Optimal Conditions 322
7.7 Genetic Algorithm for H2 Production Optimization 325
7.7.1 Experimental Design and Procedures 325
7.7.2 Response Surface Methodology 327
7.7.3 Neural Network 327
7.7.4 Genetic Algorithm 328
7.7.5 Comparison of the Modeling Abilities of RSM Model and NN Model 328
7.7.6 Comparison of the Optimizing Abilities of RSM and GA Based on a NN Model 332
7.8 Optimization by Desirability Function Based on NN 333
7.8.1 Experimental Design and Procedures 334
7.8.2 Neural Network 335
7.8.3 Method of Desirability Function 336
7.8.4 Genetic Algorithm 337
7.8.5 Effects of Temperature, Initial pH, and Substrate Concentration 337
7.8.6 Optimized Parameters by Desirability Function 340
References 342
8 Sewage Sludge for Hydrogen Production 348
8.1 Introduction 348
8.2 Potential Substrates, Microorganisms, and Enzymes 350
8.3 Pathways of Hydrogen Production from Sludge 350
8.4 Fermentation Types 352
8.5 Hydrogen Consumption Pathways and Metabolic Competitors 353
8.6 Hydrogen Production Potential of Raw Sludge 354
8.7 Pretreatment of Sludge 360
8.7.1 Overview 360
8.7.2 Physical Pretreatment Methods 361
8.7.2.1 Heat Pretreatment 361
8.7.2.2 Ultrasound Pretreatment 365
8.7.2.3 Microwave Pretreatment 366
8.7.2.4 Sterilization Pretreatment 366
8.7.2.5 UV-Light Pretreatment 367
8.7.3 Chemical Pretreatment Methods 367
8.7.3.1 Alkaline Pretreatment 367
8.7.3.2 Acid Pretreatment 370
8.7.3.3 Oxidation Pretreatment 370
8.7.4 Biological Pretreatment Methods 371
8.7.5 Combined Pretreatment Methods 373
8.7.6 Comparison of Different Pretreatment Methods 376
8.8 Co-fermentation with Other Substrates 377
8.8.1 Overview 377
8.8.2 Municipal Waste Fractions 378
8.8.3 Crop Residues 378
8.8.4 Carbohydrate-Rich Wastewaters 383
8.8.5 Pure Carbohydrates 384
8.8.6 Other Organic Wastes 384
8.9 Influence Factors 385
8.9.1 Temperature 385
8.9.2 pH 388
8.9.3 Retention Time and OLR 388
8.9.4 Agitation Intensity 389
8.9.5 Nutrients and Inhibitors 389
8.9.6 Inoculum 390
8.10 Kinetic Models 392
8.10.1 The Modified Gompertz Model 392
8.10.2 Response Surface Methodology 399
8.11 End Products in the Liquid Phase 401
8.12 Two-Stage Process 408
8.12.1 Second Stage-Anaerobic Digestion 408
8.12.2 Second Stage-Photo-Fermentation 412
8.13 Sludge Solubilization by Low-Pressure Wet Oxidation for Hydrogen Production 413
8.13.1 Overview 413
8.13.2 Sludge Characteristics 414
8.13.3 Sludge Solubilization Procedure 414
8.13.4 Bio-hydrogen Production and Analytical Methods 415
8.13.5 Sludge Dissolution by Low Pressure Wet Oxidation 415
8.13.6 Kinetic Analysis of Hydrogen Production 417
8.13.7 Substrate Consumption 419
8.13.8 Volatile Fatty Acids Formation 421
8.13.9 Hydrogen Yield 422
8.14 Sludge Disintegration by Radiation for Hydrogen Production 424
8.14.1 Overview 424
8.14.2 Sludge Disintegration Procedure 424
8.14.3 Sludge Disintegration by Radiation 425
8.14.4 Hydrogen Production 426
8.14.5 Consumption and Release of Organic Matters 428
8.15 Concluding Remarks and Perspectives 430
8.16 Conclusions 433
References 434

Erscheint lt. Verlag 27.5.2017
Reihe/Serie Green Energy and Technology
Zusatzinfo XIII, 433 p. 149 illus.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte anaerobic bacteria • Anaerobic digestion • bio-augmentation • Biohydrogen production • Biological processes • dark fermentation • Kinetic Model • microbial analysis • mixed culture • pre-treatment technologies • Process Optimization • pure culture • Reactor Design • response surface methodology • Solid Waste • waste recovery • Waste water
ISBN-10 981-10-4675-1 / 9811046751
ISBN-13 978-981-10-4675-9 / 9789811046759
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich