Inorganic Nanosheets and Nanosheet-Based Materials -

Inorganic Nanosheets and Nanosheet-Based Materials (eBook)

Fundamentals and Applications of Two-Dimensional Systems
eBook Download: PDF
2017 | 1st ed. 2017
VIII, 542 Seiten
Springer Japan (Verlag)
978-4-431-56496-6 (ISBN)
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids.

Understanding nanosheets from chemical, structural, and application aspects in relation to their 'fully nanoscopic' characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry of inorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed. 



- Teruyuki Nakato
Vice-chairman of Forum on Low-dimensional Photo-functional Materials, Chemical Society of Japan
Councilor of Clay Science Society of Japan
Editorial Board Member of Clay Science, Clay Science Society of Japan
National Advisory Board Member of International Symposium on Zeolite and Microporous Crystals, Japan Association of Zeolites
- Jun Kawamata
President of Forum on Low-dimensional Photo-functional Materials, Chemical Society of Japan
Councilor of Clay Science Society of Japan
Editorial Board Member of Clay Science, Clay Science Society of Japan
Corresponding Symposium Organizer, Pacifichem 2015
Vice-chairman of Forum on Bio-Optics
- Shinsuke Takagi
Vice-chairman of Forum on Low-dimensional Photo-functional Materials, Chemical Society of Japan
Advisory Editorial Board of Langmuir
Editor in Chief of Clay Science, Clay Science Society of Japan

This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids. Understanding nanosheets from chemical, structural, and application aspects in relation to their "e;fully nanoscopic"e; characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry ofinorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed. 

- Teruyuki Nakato Vice-chairman of Forum on Low-dimensional Photo-functional Materials, Chemical Society of Japan Councilor of Clay Science Society of Japan Editorial Board Member of Clay Science, Clay Science Society of Japan National Advisory Board Member of International Symposium on Zeolite and Microporous Crystals, Japan Association of Zeolites - Jun Kawamata President of Forum on Low-dimensional Photo-functional Materials, Chemical Society of Japan Councilor of Clay Science Society of Japan Editorial Board Member of Clay Science, Clay Science Society of Japan Corresponding Symposium Organizer, Pacifichem 2015 Vice-chairman of Forum on Bio-Optics - Shinsuke Takagi Vice-chairman of Forum on Low-dimensional Photo-functional Materials, Chemical Society of Japan Advisory Editorial Board of Langmuir Editor in Chief of Clay Science, Clay Science Society of Japan

Preface 6
Contents 8
Fundamental Aspects of Inorganic Nanosheets 10
1 Materials Chemistry of Inorganic Nanosheets—Overview and History 11
1.1 Introduction—What Are Inorganic Nanosheets? 11
1.2 Inorganic Nanosheets and Chemistry of Nanomaterials 13
1.3 Intercalation Chemistry and Nanosheets 14
1.4 History of Nanosheet Research 16
1.4.1 Paradigm of Chemistry Researches Related to Nanosheets 16
1.4.2 Progress in Intercalation Chemistry 16
1.4.3 Development of Nanosheet Chemistry 19
1.5 Classification and Preparation of Exfoliated Nanosheets 20
1.5.1 Nanosheets of Ion-Exchangeable Layered Solids 21
1.5.2 Nanosheets of Non-ion-Exchangeable Layered Solids 22
1.6 Nanosheet-Based Nanostructures 25
1.7 Application of the Nanosheets to Advanced Materials 27
1.7.1 Applications of Single Nanosheets 28
1.7.2 Applications of Two-Dimensional Nanospaces 29
1.7.3 Applications Based on Thinness of the Nanosheets 30
1.7.4 Applications Based on the High Surface Area of the Nanosheets 32
1.7.5 Applications of Colloidally Dispersed State of the Nanosheets 33
1.8 Outlook 34
References 35
2 Clay Minerals as Natural Nanosheets 40
2.1 Introduction 40
2.2 Clay Minerals 41
2.2.1 General 41
2.2.2 Smectites 42
2.3 Film Formation Techniques 45
2.3.1 Casting 45
2.3.2 Spin Coating 46
2.3.3 Layer-by-Layer (LbL) Assembling 47
2.3.4 Langmuir–Blodgett (LB) and Langmuir–Schaefer (LS) Technique 48
2.4 Organization of Molecules in the Interlayer Space 50
2.4.1 Alkylammonium Cations 50
2.4.2 Cationic Organic Dyes 51
2.4.3 Cationic Inorganic Dyes 56
2.5 Organization of Clay Mineral Layers 57
References 59
3 Synthetic Nanosheets from Ion-Exchangeable Layered Solids 61
3.1 Introduction 61
3.2 Cation-Exchangeable Layered Solids and Their Exfoliation 62
3.2.1 Cation-Exchangeable Layered Solids 62
3.2.2 Exfoliation 63
3.3 Exfoliation Mechanism in Aqueous Systems 64
3.3.1 Osmotic Swelling 64
3.3.2 From Swelling to Exfoliation 66
3.3.3 Effects of the Exfoliating Reagent and Temperature 66
3.3.4 Nanosheet Size 69
3.4 Exfoliation of Typical Cation-Exchangeable Layered Solids 70
3.4.1 Titanates 70
3.4.2 Niobates and Tantalates 72
3.4.3 Perovskite-Type Titanates, Niobates, and Tantalates 74
3.4.4 Other Transition-Element Oxometallates 75
3.4.4.1 Manganates 75
3.4.4.2 Cobaltates 76
3.4.4.3 Ruthenates 76
3.4.4.4 Tungstates 77
3.4.5 Silicates 77
3.4.6 Metal Phosphates 78
3.4.7 Other Cation-Exchangeable and Related Materials 80
3.5 Exfoliation of Anion-Exchangeable Layered Solids 81
3.5.1 Layered Double Hydroxides (LDHs) 81
3.5.2 Layered Hydroxide Salts 84
3.6 Assembly of the Nanosheets 85
3.6.1 Aggregation to Bulk Solids 86
3.6.1.1 Porous Solids 86
3.6.1.2 Cast Films 87
3.6.1.3 Transformation to Nanoscrolls 90
3.6.2 Layer-by-Layer Assemblies 91
3.6.2.1 Electrostatic LbL Assemblies 91
3.6.2.2 Langmuir–Blodgett Films 93
3.6.2.3 Nanosheet Monolayer Films as Substrates for Crystal Growth 93
3.6.3 Assemblies of the Nanosheets in the Colloidal State 95
3.7 Summary and Outlook 97
References 98
4 Graphene: Synthesis and Functionalization 107
4.1 Introduction 107
4.1.1 Bulk Form of Graphene and Related Layered Materials 107
4.1.2 Graphene Isolation and the Following Researches 108
4.2 Basic Properties 109
4.2.1 Structure and Mechanical Properties 109
4.2.2 Electronic State and Electrical Properties 111
4.3 Fabrication and Functionalization 113
4.3.1 Mechanical Exfoliation 113
4.3.2 Chemical Exfoliation 114
4.3.3 Decomposition of SiC 115
4.3.4 Chemical Vapor Deposition 116
4.3.4.1 Precipitation 116
4.3.4.2 Surface Reaction 117
4.3.4.3 Other Methods Related to CVD 118
4.4 Functionalization 119
4.4.1 Covalent Functionalization 120
4.4.2 Non-covalent Functionalization 121
4.4.3 Heteroatom Doping 122
4.4.4 Graphene Nanoribbon and Graphene Quantum Dot 124
4.5 Related Materials 125
4.5.1 Silicene, Germanene, Stannene, Phosphorene 126
4.5.2 Hexagonal Boron Nitride and Transition Metal Dichalcogenide 128
4.5.3 Heterostructures 129
References 131
5 Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure 139
5.1 Introduction 140
5.2 Transition Metal Dichalcogenides 142
5.2.1 Crystal Structure 142
5.2.2 Preparation 143
5.2.3 Energy Band Structure 144
5.2.4 Optical Signatures of Band Structure 146
5.2.5 Optical Signatures of Excitons 150
5.2.6 Many-Body Effects in Bilayers and van der Waals Heterostructures 156
5.3 Other Layered Chalcogenides 156
5.3.1 Sn-Based Monochalcogenides 157
5.3.2 Ga-Based Monochalocogenides 158
5.3.3 Re-Based Dichalcogenides 159
5.3.4 Trichalcogenides 160
5.4 Summary 161
References 161
6 Inorganic–Organic Interactions 169
6.1 Introduction 169
6.2 Electrostatic Interactions 170
6.3 Other Driving Forces for the Intercalation 180
6.4 Guest–Guest Interactions 183
6.5 Summary and Future Perspectives 187
References 188
7 Hybridization with Polymers 193
7.1 Introduction 193
7.2 Typical Examples of Hybrid Materials A Goal of Hybridization with Polymers
7.2.1 Clay A Hybrid of Silicate Layers with Water
7.2.2 Alloys Good Examples of Ideal Hybrids
7.3 Intercalation Reaction of Sheet Silicates with Organic Compounds 196
7.4 Nylon-Clay Mineral Hybrids (NCH) by Toyota R& D Lab
7.5 Exfoliation Process for Clay-Polymer Nanocomposites (CPNs) 200
7.6 Polymer Processing and Optimization of Properties for CPNs 201
7.7 Progress in the Development of New Hybrids 203
7.8 Conclusions 205
References 205
8 Colloidal Nanosheets 207
8.1 Introduction 207
8.2 Classical Theory of Colloids Applicable for Nanosheets 208
8.3 Liquid Crystal Phases of Nanosheet Colloids 210
8.3.1 Layered Phosphates 212
8.3.2 Layered Transition Metal Oxides 216
8.3.3 Layered Clay Minerals 219
8.3.4 Graphene and Grapheme Oxide 222
8.3.5 Other Related Materials 224
8.4 Theories for the Liquid Crystal Phase Formation of Nanosheet Colloids 225
8.4.1 Onsager Theory 225
8.4.2 Other Theories 228
8.5 Orientational Control Under External Fields 229
8.5.1 Orientation Under Electric Fields 230
8.5.1.1 Electric Birefringence 230
8.5.1.2 Electrorheological Behavior 231
8.5.1.3 Electric Alignment of the Nanosheets in the LC State 233
8.5.2 Orientation Under Magnetic Fields 235
8.5.3 Orientation by Shear Forces 237
8.5.4 Hierarchical Macroscopic Structures of Nanosheet LCs Under Dual External Fields 238
8.5.5 Orientation at the Interfaces 239
8.5.6 Immobilization of Aligned Nanosheet Structures 241
8.6 Multicomponent Nanosheet Colloids 244
8.6.1 Phase Separation in Multicomponent Colloids 244
8.6.2 Phase Separation of Binary Nanosheet Colloids 246
8.6.3 Photochemical Applications of Niobate–Clay Binary Nanosheet Colloids 249
8.7 Rheological Properties 251
8.7.1 Theory and Models 252
8.7.2 Colloid Structure and Rheology 254
8.7.3 Control of the Rheological Properties of the Nanosheet Colloids 257
8.8 Summary and Outlook 259
Acknowledgements 260
References 260
Functions and Applications of the Inorganic Nanosheets 267
9 Adsorbents Derived from Layered Solids 268
9.1 Introduction 268
9.2 Adsorption of Metal Ions 269
9.2.1 Cation Exchange 269
9.2.2 Anion Exchange 272
9.3 Adsorption of Molecules 273
9.3.1 Carbon Dioxides 273
9.3.2 Organic Molecules 277
9.4 Adsorbents Design by the Modification of Layered Solids 277
9.4.1 Organic Modification with Ionic Species 277
9.4.2 Pillared-Layered Materials 279
9.4.3 Grafting 284
9.4.4 Inorganic Modification 285
9.4.5 Characterization 287
9.4.6 Stimuli Responsive Adsorbents 287
9.5 Adsorption of Polymers 291
9.6 Adsorption of Nanoparticles 293
9.7 Morphosynthesis of Layered Solids for System Design 294
9.8 Summary and Future Perspectives 299
References 300
10 Sensors 307
10.1 Introduction 307
10.2 Sensing Gas Molecules 308
10.3 Sensing Dissolved Molecules 313
10.4 Summary 315
References 315
11 Energy Storage Systems 319
11.1 Introduction 319
11.2 Requirements as Electrode Materials 319
11.3 Fabrication of Thin-Film Electrodes 320
11.4 Pseudo-capacitive Properties of Exfoliated Oxide Nanosheet Electrodes 321
11.4.1 Pseudo-capacitive Properties of RuO2 Nanosheet Electrodes 322
11.4.2 Pseudo-capacitive Properties of MnOx and CoOx Nanosheet Electrodes 326
11.5 Oxide Nanosheets for Rechargeable Batteries 328
References 330
12 Graphene Oxide Based Electrochemical System for Energy Generation 334
12.1 Introduction 334
12.2 Properties of GO 335
12.2.1 Structure of GO 335
12.2.2 Electric Conduction of GO 337
12.2.3 Proton Conduction of GO 338
12.2.4 Electron and Proton Mixed Conduction of GO 340
12.3 Applications of GO/RGO in Electrochemical Devices 340
12.3.1 Fuel Cells 340
12.3.2 Supercapacitors 342
12.3.3 Other Devices 344
References 345
13 Nanosheet-Based Electronics 350
13.1 Introduction 350
13.2 Electronic Properties of 2D Oxide Nanosheets 351
13.3 Electronic Devices Based on 2D Oxide Nanosheets 354
13.4 Conclusion and Outlook 357
References 358
14 Photoenergy Conversion 360
14.1 Introduction 360
14.2 Conversion of Photoenergy into Chemical Energy 361
14.3 Conversion of Photoenergy into Electrical Energy 362
14.4 Conversion of Photoenergy into Mechanical Energy 363
14.5 Wavelength Conversion of Photoenergy and Light Harvesting 364
14.5.1 Theory of Förster Resonance Energy Transfer 364
14.5.2 Nonphotofunctional Nanosheets as FRET Reaction Fields for Organic Guests 365
14.5.3 Photofunctional Nanosheets as FRET Donor/Acceptors 368
14.6 Summary 371
References 371
15 Photofunctional Nanosheet-Based Hybrids 375
15.1 Introduction 375
15.2 Properties of Nanosheet-Based Hybrids 377
15.3 Photofunctional Applications of Nanosheet-Based Hybrids 378
15.3.1 Photocatalytic Degradation of Toxic Organic Pollutants 379
15.3.2 Photocatalytic Water Splitting and CO2 Reduction 384
15.3.3 Solar Cells 388
15.3.4 Photoluminescence 389
15.4 Conclusions and Outlook 391
References 393
16 Efficient Photocatalytic Systems Integrated with Layered Materials Promoters 397
16.1 Introduction 397
16.2 Charge Transfer Promoters 398
16.3 Molecular Recognition 402
16.4 Others 406
16.5 Conclusions 408
References 408
17 Semiconductor Nanosheets 410
17.1 Band Structures of Nanosheets 410
17.2 Nanosheet pn-Junction 411
References 417
18 Hybrids with Functional Dyes 420
18.1 Introduction 421
18.1.1 Basic Features of the Hybrids with Photoactive Dyes 422
18.2 Surface and Structural Parameters of Inorganic Nanolayered Compounds 423
18.3 Material Types and Strategies for the Synthesis of Hybrid Materials 424
18.3.1 Colloids 424
18.3.2 Surface Modification of Inorganic Nanoparticles 425
18.3.3 Hybrids with Neutral, Insoluble, and Hydrophobic Dyes 426
18.3.4 Sol–Gel Processes and Covalently Attached Dye Molecules 428
18.3.5 Thin Solid Films 429
18.3.6 Nanocomposites with Polymers and Other Complex Systems 432
18.4 Molecular Aggregation and Photoactivity of Hybrid Materials 432
18.4.1 Metachromasy and Dye Molecular Aggregation 432
18.4.2 Molecular Aggregation and Photoactivity 434
18.4.3 Effect of Layer Charge 435
18.4.4 J-Aggregates 436
18.4.5 Reduction of Dye Molecular Aggregation by Using Surfactants 437
18.4.6 Molecular Aggregation in Other Systems 438
18.5 Phenomena and Properties of Hybrid Materials 439
18.5.1 Optical Anisotropy and Dye Molecular Orientation 439
18.5.2 Structural Changes and Photochromic Properties 441
18.5.3 Nonlinear Optics 443
18.5.4 Resonance Energy Transfer 443
18.5.5 Dye Reactions and Photosensitization 445
18.6 Applications in Research and Industry 447
18.6.1 Sensors 447
18.6.2 Hybrids with Natural Dyes 448
18.6.3 Hybrids Used in Biology, Medicine, and Agriculture 449
18.6.4 Polymer Nanocomposites and Other Applications 450
18.7 Conclusions 451
Acknowledgments 451
References 452
19 Optical Materials 467
19.1 Nanosheets and Nanosheet-Based Materials for Optoelectronic Applications 467
19.2 Fabrication of Low Light-Scattering Nanosheet Materials 468
19.2.1 Restacking Technique 469
19.2.1.1 Langmuir–Blodgett-Based Technique 469
19.2.1.2 Filtration-Based Technique 470
19.2.2 Index Matching by Composition 472
19.3 Nanosheet-Based Optical Material 474
19.3.1 Modulation of Coherent Light by Using a Single-Layer Magnetic Nanosheet [37] 475
19.3.2 Buildup and Nonlinear Optical Property of Multi-quantum Well Structure 475
19.3.3 Graphene Nanosheet-Based Optical Limiting Materials 476
19.3.4 Nanosheet–Organic Compound Hybrid Materials for Wavelength Conversion 476
19.3.5 Nanosheet–Organic Compound Hybrids with Efficient Two-Photon Absorption Properties 477
19.4 Conclusions 479
References 479
20 Chirality and Its Application 482
20.1 Introduction 482
20.2 Structural Studies on the Chiral Crystal of Kaolinite 483
20.3 Stereochemistry Related to the Two-Dimensional Network of a Smectite Clay Surface 484
20.3.1 Spectroscopic Studies on the Adsorption of Metal Complexes by a Smectite Clay 484
20.3.2 Theoretical Studies of Racemic Adsorption and Its Significance for Chiral Recognition 488
20.4 Chirality Recognition by a Clay Modified with Metal Complexes 489
20.4.1 Anti-racemization of Labile Metal Complexes 489
20.4.2 Clay Column Chromatography for Optical Resolution 489
20.4.3 Photochemistry on a Modified Surface 491
20.4.3.1 Asymmetric Syntheses 491
20.4.3.2 Chiral Ru(II) Metal Complexes on a Clay Surface 492
20.4.3.3 Ir(III) Complexes Applied as a Luminescent Modifier on a Clay Surface 494
20.4.4 Construction of Clay Nano-Sheet Films for Gas Sensing 495
20.4.5 Chiral Sensing on an Electrode Modified with a Thin Film of Clay/Chelate Hybrid 496
20.5 Summary and Future Development 496
References 497
21 Applications of Nanoclay-Containing Polymer Nanocomposites 500
21.1 Introduction 500
21.2 Keys for the Design and Application of PNCs 504
21.3 Application of PNCs 504
21.4 Commodity Polymer/Clay Nanocomposites 505
21.4.1 PP/Clay Nanocomposites 505
21.4.2 PE/Clay Nanocomposites 509
21.4.3 Polyvinyl Chloride (PVC)/Nanoclay Nanocomposites 510
21.4.4 EVA/Clay Nanocomposites 511
21.4.5 Engineering Polymer/Clay Nanocomposites 511
21.4.5.1 Polyethylene Terephthalate (PET)/Clay Nanocomposites 511
21.4.5.2 Ethyl(vinyl alcohol) (EVOH)/Nanoclay Nanocomposites 512
21.4.6 Nylon/Clay Nanocomposites 514
21.4.7 Poly(Ether Ether Ketone) (PEEK)/Clay Nanocomposites 515
21.4.8 Acetal/Clay Nanocomposites 515
21.4.9 Butyl/Clay Nanocomposites 516
21.4.10 Biopolymer/Clay Nanocomposites 516
21.4.11 Conducting Polymer/Clay Nanocomposites 517
21.5 Future of Clay-Based Polymer Nanocomposites 517
21.6 Conclusion 518
Acknowledgements 518
References 518
22 Biological Materials 521
22.1 Accumulation of Man-Made Materials in the Environment 521
22.2 Man-Made Materials that Are Replacing Natural Materials that Were Used by Humans for Millennia: Transformations of Immense Proportions on a Global Scale 522
22.3 Molecules to Materials to Devices (MMD): How Nature Does It? 524
22.4 Basics of Protein Chemical Modification as a General Strategy for Biological Material Synthesis by Rational Methods 526
22.5 Synthesis, Characterization, and Evaluation of Protein Fluorescent Nanoparticles 529
22.5.1 Nanoparticles of Controlled Size from Bovine Serum Albumin 531
22.5.2 Characterization of Nanoparticles and Labeling with FITC 532
22.5.3 Nanoparticle Synthesis from Other Proteins and Enzymes 534
22.5.4 Live Cell Imaging with Protein Fluorescent Nanoparticles 535
22.5.5 GlowDots of Multiple Colors 537
22.5.6 Comparisons of GlowDots with Quantum Dots 537
22.6 Conclusions 539
Acknowledgements 539
References 539

Erscheint lt. Verlag 18.4.2017
Reihe/Serie Nanostructure Science and Technology
Zusatzinfo VIII, 542 p. 291 illus., 168 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Maschinenbau
Wirtschaft
Schlagworte Graphene • Inorganic–organic Hybrid • metal oxide • Nanosheet • Two-dimensional System
ISBN-10 4-431-56496-9 / 4431564969
ISBN-13 978-4-431-56496-6 / 9784431564966
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
Walter de Gruyter GmbH & Co.KG (Verlag)
44,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
Walter de Gruyter GmbH & Co.KG (Verlag)
44,95