Thermal Physics and Thermal Analysis (eBook)

From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials
eBook Download: PDF
2017 | 1st ed. 2017
XXVII, 567 Seiten
Springer International Publishing (Verlag)
978-3-319-45899-1 (ISBN)

Lese- und Medienproben

Thermal Physics and Thermal Analysis -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Features twenty-five chapter contributions from an international array of distinguished academics based in Asia, Eastern and Western Europe, Russia, and the USA. This multi-author contributed volume provides an up-to-date and authoritative overview of cutting-edge themes involving the thermal analysis, applied solid-state physics, micro- and nano-crystallinity of selected solids and their macro- and microscopic thermal properties. Distinctive chapters featured in the book include, among others, calorimetry time scales from days to microseconds, glass transition phenomena, kinetics of non-isothermal processes, thermal inertia and temperature gradients, thermodynamics of nanomaterials, self-organization, significance of temperature and entropy. Advanced undergraduates, postgraduates and researchers working in the field of thermal analysis, thermophysical measurements and calorimetry will find this contributed volume invaluable. This is the third volume of the triptych volumes on thermal behaviour of materials; the previous two receiving thousand of downloads guaranteeing their worldwide impact.



Prof. Jaroslav Šesták, MEng., PhD., DSc.
Prof. Jaroslav Šesták, M.Eng., Ph.D., D.Sc., Dr.h.c. (*1938) Team leader of New Technology - Research Centre in Westbohemian Region, West Bohemian University in Pilsen. Emeritus Scientist of the Academy of Sciences. Institute of Physics in Prague, Czech Republic. Past chair of the Czech Working Group on Thermal Analysis. Winner of the 1993 ICTAC/TA International Award; Founding affiliate of Thermochimica Acta (1970), Journal of Mining and Metallurgy (1996) and Int. Journal of Applied Glass Science (2010). - 293 CC publications, 13 books, 2012 SCI citations, H-index 23.

Prof. Jaroslav Šesták, MEng., PhD., DSc. Prof. Jaroslav Šesták, M.Eng., Ph.D., D.Sc., Dr.h.c. (*1938) Team leader of New Technology - Research Centre in Westbohemian Region, West Bohemian University in Pilsen. Emeritus Scientist of the Academy of Sciences. Institute of Physics in Prague, Czech Republic. Past chair of the Czech Working Group on Thermal Analysis. Winner of the 1993 ICTAC/TA International Award; Founding affiliate of Thermochimica Acta (1970), Journal of Mining and Metallurgy (1996) and Int. Journal of Applied Glass Science (2010). - 293 CC publications, 13 books, 2012 SCI citations, H-index 23.

Dedication and Acknowledgements 6
Foreword 8
The Eyewitness’s Recollections on Thermal Analysis Maturity the Half-Century Anniversary of Formation of the New Field, which is Now Due for Revision
The Western Course of Thermal Analysis Advancement, and Foundation of Thermochimica Acta 9
The Eastern Stream of Thermoanalytical Progress and Foundation of Journal of Thermal Analysis 12
Thermal Analysis has Reached Adult Status Time for Revisions
Contents 24
About the Editors 27
1 Local Thermal Analysis by Structural Characterization (TASC) 28
Abstract 28
1.1 The Development of Methods for Local Thermal Analysis 28
1.2 Measuring Transition Temperatures and Local Thermal Analysis 31
1.3 Measuring Heterogeneity 35
1.4 Conclusions 36
References 36
2 Sample Controlled Thermal Analysis (SCTA) as a Promising Tool for Kinetic Characterization of Solid-State Reaction and Controlled Material Synthesis 38
Abstract 38
2.1 Introduction to Sample Controlled Thermal Analysis 38
2.2 Advantages of SCTA for Recording Kinetic Rate Data 41
2.3 Merits of Kinetic Calculation Using CRTA Curves 48
2.4 Application of SCTA to Material Synthesis 54
2.4.1 Controls of Porosity and Specific Surface Area 54
2.4.2 Controls of Particle Morphology, Size, and Phase Composition 57
2.4.3 Controls of Debinding and Curing Processes 57
2.5 Conclusions 60
References 60
3 What Is the Physical and Operational Meaning of Temperature and Its Self-Measurability During Unsteady Thermal Processes Within Thermodynamic Concepts? 71
Abstract 71
3.1 Historical Introduction 72
3.2 Temperatura and Thermoscope 73
3.3 Temperature Definition 74
3.4 Temperature as an “Averaged” Concept 77
3.5 The Self-Measurability 78
3.6 Particularity of Thermal Analysis 81
3.7 Introducing a Novel Term “Tempericity” for Extreme Temperature Changes and Tykodi’s Classification of Thermal Science 83
3.8 Thermodynamics Under a Non-constant rate of Temperature Changes: Methods of Observing Sample Quenching 85
3.9 Practical Aspects of Off-equilibrium Temperatures Due to Heat Inertia and Thermal Gradients 87
3.10 Thermotics and Thermokinetics 92
3.11 Discussion of the Legacy of Thermodynamics 94
3.12 Conclusion 97
Acknowledgements 97
References 98
4 What Is Entropy—A Generalized Outlook and Application to Living Systems 104
Abstract 104
4.1 Introduction 104
4.2 Entropy 107
4.2.1 Balance of Entropy—System Entropy Near an Equilibrium State 107
4.2.2 Relations Between Fluctuations and Change of Entropy 108
4.2.3 Thermodynamic Definition of Entropy 110
4.3 Stability 114
4.3.1 Stability of the Equilibrium System 114
4.3.2 Thermodynamic Stability Condition for Non-living Open System 118
4.3.3 Thermodynamic Stability Condition for Living Open System 120
4.3.4 Application of Thermodynamic Stability Condition for Living Open System 122
4.3.4.1 Energetic Limitations of Population Growth 124
4.3.4.2 Dynamics of Ecological System with Migration 127
Stability of Ecological System with Migration 130
4.3.4.3 Basal Metabolism of Human Body 131
References 132
5 Kinetic Phase Diagrams as an Enforced Consequence of Rapid Changing Temperature or Diminishing Particle Size: Thermodynamic Fundamentals and Limits 134
Abstract 134
5.1 Introducing Equilibrium and Off-Equilibrium Thermodynamics 134
5.2 Thermodynamic Legitimacy When Assuming the Effect of Programmed Temperature Changes at the Constant Heating Rate 136
5.3 Requirement for a Certain Driving Force in Order to Accomplish Transformations 137
5.4 Innovative Sphere of ‘Kinetic Phase Diagrams’ When Incorporating Radical Temperature Changes 139
5.5 Intensive Cooling as a Nonequilibrium Thermodynamic Status of a Certain Sample ‘Autonomy’ 141
5.6 Query About the Implication of the Term ‘Temperature’ During Rapid Quenching—What About ‘Tempericity’ as an Alternative? 144
5.7 Size as Another Degree of Thermodynamic Freedom for the Issue of Nanomaterials 146
5.8 Further Expansion of Kinetic Phase Diagram and Nanostate Determinability 149
Acknowledgements 150
References 151
6 Self-organized Periodic Processes: From Macro-layers to Micro-world of Diffusion and Down to the Quantum Aspects of Light 156
Abstract 156
6.1 Introduction 157
6.2 Self-Similarity and the Orderly Dendritic Growth 158
6.3 Chemical Swinging Clock and the Emergence of Planck Constant 161
6.4 Diffusion Action of Brownian Particles 163
6.5 Oscillation Processes in Chemistry and Biology: Systems Far from Equilibrium 167
6.6 Special Cases of Oscillation Processes: From Solid-State to Atmosphere 171
6.7 Thinkable Hypothesis of the Light Self-Organization 174
Acknowledgements 176
References 177
7 Clapeyron and Ehrenfest Equations and Hyper-free Energy for Partly Open Systems 183
Abstract 183
7.1 Clapeyron Equation in Closed Systems 184
7.2 Ehrenfest Equations in Closed Systems 185
7.3 Hyper-free Energy in Partly Open Systems 189
7.4 Clapeyronian Equations for Partly Open Systems 191
7.5 Ehrenfestian Equations for Partly Open Systems 194
Acknowledgements 198
References 198
8 Nonstoichiometric Phases—Composition, Properties and Phase Transitions 200
Abstract 200
8.1 Introduction 201
8.2 Composition of Nonstoichiometric Phases 202
8.3 Equilibrium Crystallochemical Composition 204
8.4 Material Properties 207
8.5 Phase Transitions 211
Acknowledgements 216
References 216
9 How Do Crystals Nucleate and Grow: Ostwald’s Rule of Stages and Beyond 218
Abstract 218
9.1 Introduction 219
9.2 Ostwald’s Rule of Stages and Its Generalization 221
9.3 Crystal Nucleation and Growth, and Fragility 226
9.4 Fragility Index and Deviations from Arrhenius-Type Temperature Dependence of Viscosity 228
9.5 Summary of Results and Discussion 231
References 232
10 Imperfections of Kissinger Evaluation Method and the Explanation of Crystallization Kinetics of Glasses and Melts 235
Abstract 235
10.1 Introduction 235
10.2 Reminding the Method Proposed by Kissinger 236
10.3 Choice of Reaction Mechanism, Isothermal and Nonisothermal Degree of Conversion, and the Impact of Equilibrium Background 239
10.4 The Apex of Maximum Temperature Deviation at a DTA Peak Is not the Point of Its Maximum Reaction Rate 240
10.5 DTA Equation of Borchard and Daniels and the Heat Inertia Correction 243
10.6 Kinetic Equations when Involving Equilibrium Temperature (e.g., Melting Temperature) 246
10.7 Conclusions 249
Acknowledgements 250
Appendix 1: Gibbs Energy Approximations 251
Appendix 2: Experimental 252
References 253
11 Thermo-kinetic Phenomena Occurring in Glasses: Their Formalism and Mutual Relationships 259
Abstract 259
11.1 The Kinetics of the Structural Relaxation and Crystallization Processes in Terms of the Tool-Narayanaswamy-Moynihan and Johnson-Mehl-Avrami Models 259
11.1.1 Structural Relaxation Kinetics by TNM Model 259
11.1.2 Crystallization Kinetics by JMA Model 263
11.2 General Consideration Regarding Thermal Behavior in the Neighborhood of Glass Transition Temperature 269
11.2.1 Dynamic Cooperative Performance 269
11.2.2 Shear Viscosity, Fragility, and Thermal Sensitivity 271
Acknowledgements 273
References 274
12 Parameterization and Validation of Thermochemical Models of Glass by Advanced Statistical Analysis of Spectral Data 279
Abstract 279
12.1 Introduction 280
12.2 Thermodynamic Models of Glass 280
12.3 Thermochemical Model of Shakhmatkin and Vedishcheva 281
12.4 Practical Aspects of Thermochemical Calculations 285
12.5 Evolutionary Approach to Chemical Equilibrium Determination 287
12.6 Implementation of the Model into MS Excel 290
12.7 Example: The Thermochemical Model of the CaO–B2O3 Glass System 293
12.8 Conclusion 298
Acknowledgements 298
References 298
13 Equivalence of the Arrhenius and Non-Arrhenian Temperature Functions in the Temperature Range of Measurement and Its Application in Isoconversional Kinetics 301
Abstract 301
13.1 Introduction 301
13.2 Theoretical Part 303
13.2.1 Complex Mechanisms and the Single-Step Approximation 303
13.2.2 Incremental Isoconversional Methods 304
13.2.3 Recalculation of the Kinetic Parameters 305
13.3 Calculations 306
13.4 Results and Discussion 308
13.4.1 Recalculation of Kinetic Parameters 308
13.4.2 Uncertainties of the Parameters 310
13.4.3 Integral and Differential Isoconversional Methods 311
13.4.4 Equivalence of the Temperature Functions 312
13.5 Conclusions 313
Acknowledgements 314
References 314
14 Rationale and Myth of Thermoanalytical Kinetic Patterns: How to Model Reaction Mechanisms by the Euclidean and Fractal Geometry and by Logistic Approach 316
Abstract 316
14.1 Some Philosophical Thoughts as Introduction 316
14.2 On a General Execution of Mathematical Modeling 319
14.3 Modeling Roots Applied in Reaction Kinetics 320
14.4 Use of yet Atypical Fractal Geometry 324
14.5 Mathematical Commencement and Inspiration by Logistic Models 326
14.6 Impact of Logistic Strategy and the Origin of SB Equation 329
14.7 Further Prospects 333
Acknowledgements 334
References 334
15 The Role of Heat Transfer and Analysis Ensuing Heat Inertia in Thermal Measurements and Its Impact to Nonisothermal Kinetics 340
Abstract 340
15.1 Introduction: Heat Inertia and Its Consequences 341
15.2 Application in Differential Thermal Measurements 343
15.3 Historical Misinterpretations 344
15.4 Counterparting Impact of Gradients 347
15.5 Relations Following from General Kinetic Equation for the First-Order Reactions 350
15.6 Kissinger Erroneous Assumption on Temperature of Maximum Reaction Rate 353
15.7 Determination of the Correct Temperature of Maximum Reaction/Transition Rate 354
15.8 Kinetic Equation and Kissinger Equation After Including the Heat Inertia Term 355
15.9 Often Forgotten Influence of Thermodynamic Equilibrium Concerning Kinetic Equation 357
15.10 Conclusion 360
Acknowledgements 361
References 362
16 Thermal Gradients in Thermal Analysis Experiments 366
Abstract 366
16.1 Introduction 366
16.2 Sample’s Heat Balance: Conditions for the Formation of a Temperature Gradient 367
16.2.1 Sample Thermal Inertia 369
16.2.2 Thermal Gradients Due to the Heat Evolved from the Sample 372
16.3 Thermal Runaway 376
16.4 Dependence on the Sample Aspect Ratio 379
Acknowledgements 381
References 381
17 The Physical Kinetics of Reversible Thermal Decomposition 384
Abstract 384
17.1 Are Thermogravimetric Results Usable in Practice? 385
17.2 The Anatomy of a Gas-Producing Thermal Decomposition of Solids 386
17.3 Distinction Between Micro- and Macro-Kinetics of Reversible Thermal Decomposition of Solids 389
17.3.1 Micro-Kinetics 389
17.3.2 Macro-Kinetics 389
17.4 How Is the Thermodynamic-Equilibrium Temperature Represented in TG Curves? 392
17.5 The Pathology and the Healthy Physiology of Temperature of Decomposition 397
17.6 Practical Consequences 400
17.7 Simple Answers to Complex Questions Are Sometimes Wrong 400
17.8 Does Decomposition Temperature Exist at All? 403
17.9 How Can Thermogravimetry Restore Its Reputation in the Industry? 403
References 404
18 Thermodynamic Equilibria in Systems with Nanoparticles 406
Abstract 406
18.1 Introduction 407
18.2 Gibbs Energy of Nanophases 407
18.2.1 Single Component Systems 407
18.2.2 Multicomponent Systems 413
18.3 Thermodynamic Equilibria in Nanosystems 414
18.3.1 General Equilibrium Conditions for Systems with Nanoparticles 414
18.3.2 Solid–Liquid Equilibria 416
18.3.3 Solid–Liquid–Gas Equilibria 418
18.4 Conclusions 420
Acknowledgements 420
References 421
19 Physico-chemical Analysis of Ceramic Material Systems: From Macro- to Nanostate 424
Abstract 424
References 443
20 Thermal Insulation and Porosity—From Macro- to Nanoscale 445
Abstract 445
20.1 Introduction 445
20.2 Porosity in Textile Structures 446
20.3 Porosity and Thermal Insulation 448
20.4 Thermal Conductivity Prediction 450
20.5 Thermal Insulation 454
20.6 Aerogels 458
20.7 Conclusion 466
References 467
21 Biomaterials and Nanotechnology Approach to Medical Enhancement 469
Abstract 469
21.1 Introduction 469
21.2 Biomaterials 470
21.3 Historical Aspects of Glasses and Bioactivity 474
21.4 Porous Materials 475
21.5 Nanoparticles in Modern Medicine 477
Acknowledgements 482
References 483
22 Thermal Analysis Scheme Anticipated for Better Understanding of the Earth Climate Changes: Impact of Irradiation, Absorbability, Atmosphere, and Nanoparticles 491
Abstract 491
22.1 Mid-European Prologue 491
22.2 Introduction 492
22.3 Earth Irradiation Treated in the Frame of Thermal Analysis 493
22.4 History of Research into the Earth Climate and Atmosphere Thermodynamics 495
22.5 Influence of the Sample Position—Geometrical Anomalies of the Earth’s Orbit 497
22.6 Influence of the Radiator—Irregularities in the Energy Emission of the Sun 499
22.7 The Earth as a Black Body Sample—Heat and Entropy Fluxes 500
22.8 Composition of the Atmosphere, Greenhouse Effect, and the Recent Views of Climate Changes 503
22.9 Often Underestimated Effect of Nanoparticles and Allied Health Risks 505
22.10 Thermal Inertia, Climate Feedbacks, and Ecosystem Thermodynamics 508
Acknowledgement 511
References 511
23 Thermodynamics and Economics 515
Abstract 515
23.1 Introduction 515
23.2 Neoclassical Problems 516
23.2.1 Solow Model 516
23.2.2 The Neoclassical Misinterpretation of a Monetary Balance as a Circular Flow 517
23.3 The Double-entry Balance 518
23.3.1 The Monetary Balance as Excel Calculation 518
23.3.2 The Monetary Balance as a Spiral 518
23.3.3 The Monetary Balance as a Closed Stokes Line Integral 519
23.3.4 The Double-entry Balance 519
23.4 The Laws of Economics in Integral Form 521
23.4.1 The Monetary Circuit 521
23.4.2 The Productive Circuit 522
23.5 The Laws of Economics in Differential Forms 523
23.5.1 The First Law of Economics 523
23.5.2 The Second Law of Economics 524
23.5.3 The Third Law of Economics 524
23.5.4 Economics and Thermodynamics 525
23.5.5 Standard of Living as Economic Temperature 525
23.5.6 Capital 527
23.5.7 Entropy as the New Production Function 527
23.5.8 Entropy and Work 529
23.5.9 Production Costs 530
23.6 The Mechanism of Capitalistic Production 530
23.6.1 The Carnot Production Cycle of Capitalism 530
23.6.2 The Monetary Cycle of Capitalism 533
23.6.3 Production and Trade 535
23.6.4 Production and Trade Are Two-level Mechanism: ?2 and ?1 536
23.6.5 Efficiency 536
23.6.6 Scissor Effect 536
23.6.7 Efficiency and Socioeconomic Models 537
23.6.8 Economic Growth of Countries 537
23.7 Conclusion 538
References 539
24 On the Mathematical Structure of Physical Quantities 540
Abstract 540
24.1 Introduction 540
24.2 Arithmetization of Geometry 541
24.3 Physical Conception of Measurement and Quantity 543
24.4 Measurement Error 545
24.5 Measurement Theory 547
24.6 Representation of Real Numbers 548
24.7 An Epistemological Consequence—Physical Quantities Are Rational 552
24.8 Principle of Conformity 555
24.9 Conclusions 557
References 557
25 Professional Value of Scientific Papers and Their Citation Responding 560
Abstract 560
25.1 Introduction: ‘Publish or Perish’ 561
25.2 Citation Strategy and Forgery 562
25.3 Scientific Information {{/bf /Rightarrow }} Money and Fame 565
25.4 Light and Truth 566
25.5 In the Depth of the Heart 568
25.6 Particularity of Thermal Analysis 569
25.7 Quality Time Quantity Is Constant 570
Acknowledgements 574
Appendix: Factor Analysis 574
References 576
Index 579

Erscheint lt. Verlag 24.3.2017
Reihe/Serie Hot Topics in Thermal Analysis and Calorimetry
Hot Topics in Thermal Analysis and Calorimetry
Zusatzinfo XXVII, 567 p. 179 illus., 83 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte chemical thermodynamics • Glassy Amorphous Materials • Glassy materials thermal • Non-Crystalline Materials thermal • Thermal Analysis • thermal physics • Thermal technique • Thermokinetics
ISBN-10 3-319-45899-X / 331945899X
ISBN-13 978-3-319-45899-1 / 9783319458991
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99