Spatial Data Handling in Big Data Era -

Spatial Data Handling in Big Data Era (eBook)

Select Papers from the 17th IGU Spatial Data Handling Symposium 2016
eBook Download: PDF
2017 | 1st ed. 2017
XIII, 237 Seiten
Springer Singapore (Verlag)
978-981-10-4424-3 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications.

Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience.

 




CHENGHU ZHOU received his PhD from the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, with a focus on Cartography and GIS. He is currently an Academician at the Chinese Academy of Science.

FENZHEN SU completed his PhD in GIS and Cartography at the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing. He is currently Director of the State Key Lab of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

FRANCIS HARVEY completed his PhD at the University of Washington, Seattle, Washington. He has been head of the Department of Cartography and Visual Communication, Leibniz Institute for Regional Geography, since 2015.

JUN XU received his PhD in Geographical Information Systems from the Department of Geography, State University of New York at Buffalo. Her research interests are in the fields of geographical ontology, spatial knowledge representation and qualitative reasoning, and spatial data mining. She is now an Associate Professor at the State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.


This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications.Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience. 

CHENGHU ZHOU received his PhD from the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, with a focus on Cartography and GIS. He is currently an Academician at the Chinese Academy of Science.FENZHEN SU completed his PhD in GIS and Cartography at the Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing. He is currently Director of the State Key Lab of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.FRANCIS HARVEY completed his PhD at the University of Washington, Seattle, Washington. He has been head of the Department of Cartography and Visual Communication, Leibniz Institute for Regional Geography, since 2015.JUN XU received his PhD in Geographical Information Systems from the Department of Geography, State University of New York at Buffalo. Her research interests are in the fields of geographical ontology, spatial knowledge representation and qualitative reasoning, and spatial data mining. She is now an Associate Professor at the State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

Big geographical data storage and search.- Data-intensive geospatial computing and data mining.- Visualization of big geographical data.- Multi-scale spatial data representations, data structures and algorithms.- Space-time modelling and analysi.- Geological applications of Big Data and multi-criteria decision analysis.

Erscheint lt. Verlag 4.5.2017
Reihe/Serie Advances in Geographic Information Science
Advances in Geographic Information Science
Zusatzinfo XIII, 237 p. 84 illus.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Technik
Schlagworte data-intensive • geospatial computing • geo-visualization • Knowledge Discovery • multi-scale • Space-time • spatial analysis • Spatial Big Data • Spatial Data Mining • spatial data representation
ISBN-10 981-10-4424-4 / 9811044244
ISBN-13 978-981-10-4424-3 / 9789811044243
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
49,90