Deep-Sea Mining (eBook)
X, 535 Seiten
Springer International Publishing (Verlag)
978-3-319-52557-0 (ISBN)
Dr. Rahul Sharma is a Chief Scientist at the National Institute of Oceanography in Goa, India. He received his PhD in Marine Science from Goa University in 1997. His research interests include development of underwater photography for deep-sea exploration, environmental impact assessment for deep-sea mining, and application of environmental data for deep-sea mining and environmental conservation.
Dr. Rahul Sharma is a Chief Scientist at the National Institute of Oceanography in Goa, India. He received his PhD in Marine Science from Goa University in 1997. His research interests include development of underwater photography for deep-sea exploration, environmental impact assessment for deep-sea mining, and application of environmental data for deep-sea mining and environmental conservation.
Foreword 5
Preface 7
Contents 9
Part I: Deep-Sea Minerals: Distribution Characteristics and Their Resource Potential 11
Chapter 1: Deep-Sea Mining: Current Status and Future Considerations 12
1.1 Historical Perspective 12
1.2 Economic Issues 17
1.3 Technical Issues 20
1.3.1 Delineation of Mine-Site and Estimation of Area for Mining 20
1.3.2 Mining System Development 21
1.3.3 Processing Technology and Waste Management 22
1.4 Environmental Issues 23
1.4.1 Impact of Environment on Mining 23
1.4.2 Impact of Mining on Environment 23
1.5 Policy Issues 26
References 27
Chapter 2: Composition, Formation, and Occurrence of Polymetallic Nodules 31
2.1 Introduction 32
2.2 Classification and Description 33
2.2.1 General Classification 33
2.2.2 Macroscopic and Microscopic Descriptions 33
2.3 Chemical and Mineralogical Composition 37
2.3.1 Chemical Composition 37
2.3.2 Mineralogical Composition 44
2.4 Formation of Manganese Nodules 47
2.4.1 Hydrogenetic Precipitation 47
2.4.2 Diagenetic Precipitation 51
2.4.3 Microbial Manganese Mobilization and Deposition 58
2.4.4 Hydrothermal Precipitation 59
2.5 Occurrence of Manganese Nodules 60
2.5.1 Clarion-Clipperton Zone 60
2.5.2 Peru Basin 63
2.5.3 Cook Islands 63
2.5.4 Central Indian Ocean Basin 64
2.5.5 Other Ocean Areas 65
References 65
Chapter 3: Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources 72
3.1 Introduction 72
3.2 Occurrence and Nature 73
3.3 Mineralogy 78
3.4 Formation and Growth Processes 83
3.4.1 Hydrogenetic Accretion 83
3.4.2 Diagenesis of and Epigenetic Mineral Formation in Older Crust Layers 89
3.4.3 Chemical Composition 95
3.4.3.1 Introduction 95
3.4.3.2 Major Constituents 97
3.4.3.3 Minor Elements 101
3.4.3.4 Trace Elements 103
Molybdenum and Tungsten 103
Platinum and Palladium 104
Niob and Gallium 111
Tellurium 112
Rare Earth Elements (REE) 114
3.4.3.5 Metal Composition Versus Water Depth 119
3.4.3.6 Interelement Relationships 122
3.5 Total and Regional Metal Potentials 131
3.5.1 Resource Assessment Model for Ferromanganese Crust Deposits 131
3.5.2 Economic Considerations 136
3.5.3 Regional Distribution of Crust Deposits 138
3.6 Conclusions 143
References 145
Chapter 4: Seafloor Massive Sulfide Deposits: Distribution and Prospecting 149
4.1 Introduction 149
4.2 Historical Review of Hydrothermal Systems and SMS Deposits Study 150
4.3 Distribution and Geological Setting of SMS Deposits 152
4.4 Morphology of SMS Deposits 156
4.5 Composition and Aging of SMS Deposits 161
4.5.1 Age of SMS Deposits 162
4.6 Formation and Source of Metals in SMS Deposits 163
4.7 Criteria for Recognition and Strategy of SMS Exploration 164
4.8 Exploration Technologies 165
4.8.1 Hydrological Tools 165
4.8.2 Geological Sampling Tools 166
4.8.3 Remote and Autonomous Operating Vehicles 166
4.8.4 Drilling Systems 166
4.8.5 Manned Submersibles 167
References 167
Chapter 5: Submarine Phosphorites: The Deposits of the Chatham Rise, New Zealand, off Namibia and Baja California, Mexico—Origin, Exploration, Mining, and Environmental Issues 171
5.1 Introduction 171
5.2 Authigenic and Diagenetic Formation of Phosphorite 172
5.3 The Chatham Rise Phosphorite 174
5.3.1 Regional Setting and Seafloor Morphology 174
5.3.2 Oceanographic Setting 177
5.3.3 Formation of the Chatham Rise Phosphorites 177
5.3.4 Distribution and Composition of the Chatham Rise Phosphorites 179
5.3.5 Resource Estimation and Mining Concept 182
5.3.6 Exploration History and Present Status (2015) 184
5.4 Phosphorite Deposits off South Africa and Namibia 185
5.4.1 Diagenetic Phosphorites off South Africa 185
5.4.2 Authigenic Phosphorites off Namibia 186
5.4.2.1 The Sandpiper Prospect 187
5.4.2.2 Mining Concept 187
5.4.2.3 Environmental Issues 188
5.5 Authigenic Phosphorites off Baja California 189
5.6 Future Development Prospects 189
References 190
Chapter 6: Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods 194
6.1 Introduction 194
6.1.1 Scope of Work 194
6.1.2 Data Used 195
6.1.3 Software Used 196
6.2 Description of Study Area 196
6.2.1 Bathymetry 196
6.2.2 Backscatter Data 198
6.3 Predictive Mapping of Manganese Nodule Abundance 199
6.3.1 Theoretical Background 199
6.3.1.1 Artificial Neural Networks (ANN) 199
6.3.1.2 Classical Geostatistics (Kriging) 201
6.3.2 Data Processing 201
6.3.3 Model Development and Calibration 203
6.4 Modelling Results 203
6.5 Resource Estimation of Manganese Nodules 207
6.5.1 Resource Estimation Based on the ANN Model 207
6.5.2 Resource Estimation Based on the Kriging Model 209
6.6 Classification of Manganese Mineral Resources 210
6.7 Conclusions and Recommendations 212
References 214
Chapter 7: Statistical Properties of Distribution of Manganese Nodules in Indian and Pacific Oceans and Their Applications in Assessing Commonality Levels and in Exploration Planning 218
7.1 Introduction 218
7.2 Nature of Data and Sources Used in the Study 219
7.2.1 Major Sources of the Data Include 219
7.3 Studies on Variabilities of Abundance and Metal Grades in Nodule Deposits 221
7.4 Further Studies on Statistical Properties of Distribution of Nodule Abundance 222
7.5 Comparative Variability Studies Between CIOB and CCZ 224
7.6 Estimation Variance in Relation to Area of Nodule Field 225
7.6.1 Verification of the Var(e)·Area Relationship 227
7.7 Estimation Variance Computations for Selected Areas in CIOB and CCZ 228
7.7.1 Observations on the Estimation Variance Values 229
7.8 Commonality in Distribution Characteristics of Nodules in CIOB and CCZ 231
7.9 Conclusions 231
References 232
Chapter 8: Assessment of Distribution Characteristics of Polymetallic Nodules and Their Implications on Deep-Sea Mining 234
8.1 Introduction 234
8.2 Estimation of Nodule Characteristics and Associated Features 236
8.2.1 Measurement of Area Covered on the Seafloor 236
8.2.2 Calculation of Nodule Abundance 237
8.3 Distribution of Nodule Characteristics and Associated Features 238
8.3.1 Frequency Distribution of Nodule: Size, Coverage, Abundance 238
8.3.1.1 Nodule Size 238
8.3.1.2 Nodule Coverage 241
8.3.1.3 Nodule Abundance 241
8.3.2 Association of Nodules with Different Substrates 242
8.3.2.1 Effect of Sediment Cover 243
8.3.2.2 Distribution of Rock Exposures 243
8.3.3 Nodule Distribution in Different Topographic Settings 244
8.4 Estimation of Mining-Related Variables 245
8.4.1 Estimation of Mining Rates 245
8.4.2 Estimation of Metal Production (MP) 245
8.4.3 Estimation of Metal Value (MV) 246
8.4.4 Estimating Total Mineable Area (M) According to UNOET (1987) 246
8.4.5 Size (or Area) of Mine-Site (As) According to UNOET (1987) Is 246
8.4.6 Area of Contact/Year (Ac) 246
8.4.7 Ore Production/Day (Op) 247
8.4.8 Volume of Sediment Disturbed at the Seafloor (Vs in m3) 247
8.4.9 Wt. of Disturbed Sediment (Wet) or Water Laden Sediment (Ws(wet) in t) 247
8.4.10 Wt. of Disturbed Sediment (Dry) or without Water (Ws(dry) in t) 247
8.4.11 Wt. of Unwanted Material (Mu) to be Disposed Off (in Mt) 247
8.5 Mining Estimates Based on Geological Factors 248
8.5.1 Estimation of Mining Rates for Dry and Wet Nodules 248
8.5.2 Metal Production for Different Mining Rates 249
8.5.3 Mining Estimates for Different Mining Rates 249
8.5.3.1 Estimation of Mineable Area 249
8.5.3.2 Area (Size) of Mine-Site 250
8.5.3.3 Area of Contact 250
8.5.3.4 Ore Production 250
8.5.3.5 Volume and Weight of Disturbed Sediment 252
8.5.3.6 Unwanted Material After Metallurgical Processing 252
8.6 Influence of Geological Factors on Mining Design 253
8.6.1 Nodule Characteristics 253
8.6.2 Association with Different Substrates 253
8.6.3 Relation with Topography 254
8.6.4 Optimization of Mining Rates 254
8.6.5 Ore Production and Area of Mine-Site 254
8.6.6 Environmental Impact and Waste Disposal 255
8.7 Conclusions 256
References 258
Part II: Deep-Sea Mining Technology: Concepts and Applications 262
Chapter 9: Fundamental Geotechnical Considerations for Design of Deep-Sea Mining Systems 263
9.1 Introduction 263
9.2 Importance of Geotechnical Characteristics on Design of Mining System 264
9.3 Geotechnical Characteristics of Deep-Sea Minerals 268
9.3.1 Manganese Nodules and Deep-Sea Sediments 268
9.3.1.1 Manganese Nodules 268
9.3.1.2 Deep-Sea Sediments 270
Sediment Sampling 270
Static Characteristics 270
Dynamic Characteristics 272
In Situ Measurement 276
9.3.2 Seafloor Massive Sulfides 276
9.3.3 Cobalt-Rich Manganese Crusts and Seamount Sediments 279
9.3.3.1 Crusts and Substrates 279
9.3.3.2 Seamount Sediments 282
Sediment Sampling 282
Geotechnical Characteristics 283
9.4 Interactions with Mining Systems 285
9.4.1 Interactions with Miner 285
9.4.1.1 Drag 285
9.4.1.2 Separating Force 289
9.4.1.3 Seafloor Plume 289
9.4.2 Interactions with Lift System 291
9.4.2.1 Abrasion of Nodules 291
9.4.2.2 Powderization of Sediments 292
9.5 Actual Design of Deep-Sea Mining System 293
9.6 Environmental Impact Studies and Scale of BIEs 296
9.7 Conclusions 297
References 299
Chapter 10: Concepts of Deep-Sea Mining Technologies 309
10.1 Introduction 309
10.2 Historical Perspective 312
10.3 Present-Day Technology 314
10.3.1 Technical Specification of Underwater Mining System 317
10.4 Studies Involved in Shallow Water Testing of Underwater Mining System 318
10.4.1 Developmental Studies on Hydraulic Devices for Deep Sea in Hyperbaric Chamber 318
10.4.2 Developmental Studies on Acoustic Positioning Systems 318
10.4.3 Underwater Nodule Imaging System 319
10.4.4 Investigations on Interactions of the Seabed with Nodule Collector 321
10.4.5 Developmental Studies on Underwater Crushing Systems 321
10.4.6 Flexible Riser System 322
10.4.7 Development of Testing Facilities and Indigenous Deep-Sea Devices 323
10.5 Laying of Artificial Nodules and Mining of Them at Shallow Waters 325
10.5.1 Mechanical Systems 326
10.5.2 Hydraulic Power Pack 326
10.5.3 Servo Valve Pack 326
10.5.4 Vane Feeder 327
10.5.5 Thrusters 328
10.5.6 Electrical Power Distribution System 328
10.5.7 Telemetry 328
10.5.8 Software 331
10.5.9 Artificial Nodules Development 331
10.5.10 Control and Operations 332
10.5.11 Sea Trials at 520-m Water Depth 333
10.6 Development of Mining System for Mining of Artificial Nodules 335
10.6.1 Mining Machine 335
10.6.2 Specification of Underwater Mining Machine 337
10.6.3 Data Acquisition System on Ship 337
10.6.4 Telemetry System 339
10.6.5 Dynamic Positioning System 340
10.6.6 Acoustic Positioning System 341
10.6.7 Testing of System 342
10.6.8 Launching and Retrieval System 342
10.7 In Situ Soil Tester 345
References 345
Chapter 11: An Application of Ocean Mining Technology: Deep Ocean Water Utilization 348
11.1 Introduction 348
11.2 Features of Deep Ocean Water 350
11.2.1 Water Temperature 350
11.2.2 Nutrient Concentration 351
11.2.3 Viable Bacterial Count 351
11.2.4 Consumable Capacity of DOW 352
11.3 Deep Ocean Water Applications 354
11.3.1 Ocean Thermal Energy Conversion (OTEC) 354
11.3.2 Air Conditioning 354
11.3.3 Fisheries Application 355
11.3.4 Agricultural Application 355
11.3.5 Freshwater Production 356
11.3.6 Other Applications 356
11.4 Multipurpose DOW Complex Float 356
11.4.1 Concept of the Float 356
11.4.2 Function of Multiple Systems 357
11.4.2.1 Material Input 358
11.4.2.2 Production Output 358
11.4.2.3 Means and Apparatus 359
11.4.2.4 Method of Operation 360
11.4.3 Design of the 5 MW Type DOW Float 360
11.4.4 Feasibility Study on the DOW Float 362
11.4.5 Conclusion 362
References 364
Part III: Metallurgical Processing and Their Sustainable Development 366
Chapter 12: Metallurgical Processing of Polymetallic Ocean Nodules 367
12.1 Introduction 367
12.1.1 Polymetallic Nodule as an Ore 368
12.1.2 Considerations for Metallurgical Processing of Nodule 370
12.2 The First Phase of Development of Metallurgical Processes for Nodules (1970–1985) 370
12.2.1 The Cuprion Process 370
12.2.2 Deep Sea Ventures (DSV) Process 372
12.2.3 The Métallurgie Hoboken-Overpelt (MHO) Process 372
12.2.4 International Nickel Company (INCO) Process 372
12.2.5 High Pressure Acid Leaching Process 374
12.3 Second Phase of R and D Efforts for Processing of Nodules (1985–2000) 375
12.3.1 Four Metal Recovery by Aqueous Reduction in Acidic Media 375
12.3.2 Three Metal Recovery by Aqueous Reduction in Ammoniacal Medium 376
12.3.2.1 The National Institute for Resources and Environment (NIRE) of Japan 376
12.3.2.2 Reduction Roasting Ammoniacal Leaching Process 376
12.4 Recent Developments in Metallurgical Processing of Nodules by Some of the Contractors (2000 Onwards) 379
12.4.1 Processes Developed by Various Organizations Sponsored by MOES India 379
12.4.1.1 NH3-SO2 Process 379
12.4.1.2 Reduction Roasting Ammoniacal Leaching Process 381
12.4.1.3 Aqueous Reduction in Sulphuric Acid 381
12.4.2 Processes Developed by IOM (an Intergovernmental Consortium of Bulgaria, Cuba, Czech Republic, Poland, Russian Federation, and Slovakia) 381
12.4.2.1 Pyro-hydrometallurgical Process 381
12.4.2.2 Hydrometallurgical Process 382
12.4.3 Processes Developed by COMRA 383
12.4.3.1 Pyro-hydrometallurgical Process (Improved INCO Process) 383
12.4.3.2 Improved Cuprion Process 383
12.4.4 Processes Developed by KIGAM 383
12.5 A Few New Concepts 387
12.5.1 Direct Use of Nodule Alloy in Stainless Steel 387
12.5.2 Process Based on HCl-MgCl2 Leaching 388
12.6 Conclusion 388
References 391
Chapter 13: Sustainable Processing of Deep-Sea Polymetallic Nodules 397
13.1 Introduction 398
13.2 Sustainability: General Outlook 399
13.3 Sustainability and Process Development: Material Flow, Reuse and Critical Metals 400
13.4 The Context of Environmental Management 404
13.5 Impact Analysis of Processes 407
13.5.1 Cradle-to-Gate Environmental Burdens: Common Metal Production and GHG Emissions 407
13.5.2 Cradle-to-Gate Environmental Burdens: Several Metals 408
13.5.3 GER/CED to Predict Environmental Burdens 410
13.5.4 Recycle Rates and CED/GHG 410
13.6 Sea Nodules Processing and Sustainability Issues 411
13.7 Observations on Sea Nodules Processing Efforts 411
13.7.1 Process Research and Flow Sheet Development 412
13.7.2 Three Metal Option to Four Metal Option 412
13.7.3 Upscaled Flow Sheet 413
13.7.3.1 Ni, Co, and Cu Recovery (Approach 1) 414
13.7.3.2 Manganese Recovery from Residue (Approach 1) 414
13.7.3.3 Ni, Co, and Cu Recovery with Manganese Dissolution (Approach 2) 415
13.7.3.4 Smelting of Sea Nodules (Approach 3) 415
13.7.4 Flow Sheets and Techno-economic Evaluation 415
13.8 Approach for Flow Sheet Impact Analysis: Using Nickel Equivalent 416
13.8.1 Partitioning of Flow Scheme for Environmental Impact Using Nickel Equivalent 417
13.8.2 Impact of Manganese Recovery 418
13.8.3 Impact of Ni, Cu, and Co Recovery 419
13.9 Reagents, Recycles, and Effect on GER 420
13.10 Beyond Four Metal Recovery Route 420
13.11 Conclusions 421
References 422
Chapter 14: Sustainable Development and Its Application to Mine Tailings of Deep Sea Minerals 425
14.1 Introduction 425
14.2 Applications in Agriculture 428
14.3 Application in Concrete 435
14.4 Application as Construction Fill 437
14.5 Applications as Industrial Fillers 438
14.5.1 Resin Casting-Solid Surface 438
14.5.2 Tiles 438
14.5.3 Rubber 439
14.5.4 Plastic 439
14.5.5 Coatings 439
14.5.6 Drilling Mud 440
14.5.7 Ceramics 440
14.6 Conclusions 441
References 442
Part IV: Environmental Concerns of Impact of Deep-Sea Mining 444
Chapter 15: Recent Developments in Environmental Impact Assessment with Regard to Mining of Deep-Sea Mineral Resources 445
15.1 Current Status of Deep-Sea Mineral Resources Development 445
15.1.1 Applications for Exploration/Exploitation Licenses 446
15.1.2 Participation of Private Enterprises 446
15.1.3 Current Technical Progress 448
15.2 Environmental Impact Evaluation 448
15.2.1 Impact Identification Thus Far 449
15.2.2 Recent Developments in Environmental Impact Assessment 452
15.2.3 Impact Evaluation Process 452
15.3 Environmental Conservation Measures 453
15.3.1 Initiatives in United Nations 454
15.3.2 Ocean Governance in Relation to CBD 454
15.3.3 Environmental Conservation in Relation to Deep-Sea Mineral Resources Development 455
15.4 Japan’s Initiatives 457
15.4.1 Ascertaining the Relationship Between Mining Methods and Environmental Impacts 457
15.4.2 Development of Effective Taxonomic Technologies 458
15.4.3 Development of Practical Environmental Monitoring System 458
15.4.4 Harmonizing with International Trends 458
15.5 Conclusion 459
References 459
Chapter 16: Taxonomic Problems in Environmental Impact Assessment (EIA) Linked to Ocean Mining and Possibility of New Technology Developments 464
16.1 The Potential of Deep-Sea Mineral Resource Development 464
16.2 Regularization of Environmental Impact Assessments 466
16.3 Issues with Environmental Impact Assessments 467
16.4 Lack of Human Resources in Taxonomy and Identification for Indexing the Impacts (Issues with Indexing) 470
16.4.1 Taxonomy and Identification 470
16.4.2 Development of Human Resources 471
16.4.3 Issues Related to the Lack of Human Resources in Taxonomy and Identification 472
16.5 Molecular Biological Approach in Environmental Impact Assessment 472
16.5.1 Application to Species Identification 473
16.5.2 Metagenomic Analysis 475
16.5.3 Metatranscriptomic Analysis 477
16.6 Conclusion 478
References 478
Chapter 17: Development of Environmental Management Plan for Deep-Sea Mining 482
17.1 Introduction 482
17.2 Potential Environmental Effects of Deep-Sea Mining 483
17.2.1 Potential Seafloor Impacts 484
17.2.2 Potential Water-Column Impacts 485
17.2.3 Potential Upper-Water Column Impacts 486
17.3 Global Efforts to Understand the Environmental Impacts 486
17.3.1 Deep Ocean Mining Environment Study by OMI and OMA, USA 486
17.3.2 Disturbance and Re-colonisation Experiment by Germany 486
17.3.3 Benthic Impact Experiment by NOAA, USA 487
17.3.4 Japan Deep-Sea Impact Experiment by MMAJ, Japan 487
17.3.5 Interoceanmetal: Benthic Impact Experiment by East European Consortium 487
17.3.6 Indian Deep-Sea Environment Experiment by NIO, India 488
17.4 Evaluating the Results of the Benthic Impact Experiments (BIEs) 488
17.4.1 Mechanism of the Experiments 488
17.4.2 Scale of the Experiments 488
17.4.3 Estimation of Weight and Volume of Sediment Discharge 490
17.4.4 Extrapolation to Commercial Mining 491
17.5 Environmental Considerations for Deep-Sea Mining 491
17.5.1 Collector Device 491
17.5.2 Surface Discharge 491
17.5.3 At-Sea Processing, Ore Transfer, and Transport 492
17.6 Environmental Management Plan for Deep-Sea Mining 492
17.7 International Regulating Agencies for Deep-Sea Mining 493
17.7.1 United Nations Convention on the Law of the Sea 493
17.7.2 International Seabed Authority 494
17.7.3 International Maritime Organization 494
17.7.4 World Meteorological Organization 494
17.8 Mitigation of Impacts Due to Different Activities 495
17.8.1 Components of Marine Mining and Their Mitigation Measures 495
17.8.2 Measures for Developing environmentally ‘Safe’ Mining System 498
17.8.3 Identification of Preservation Reference Zone (PRZ) 498
17.8.4 Hazard Management 499
17.8.4.1 Human-Induced Hazards 499
17.8.4.2 Natural Hazards 500
17.9 Institutional Set-Up and EMP Framework 500
17.9.1 Establishment of Environmental Monitoring Office 500
17.9.2 Proposed Framework for EMP 501
17.10 Conclusions 502
References 503
Websites (Accessed Between 10 June 2012 and 20 July 2012) 504
Chapter 18: The Crafting of Seabed Mining Ecosystem-Based Management 506
18.1 Introduction: 2025, the Optimistic 506
18.2 From Global to Local: An Imperfect But Forward-Thinking International Impetus 507
18.3 The Ecosystem Approach: The Dynamics of Societies and Ecosystems 510
18.4 The Ecosystem Approach in the Deep Sea 512
18.5 Building with Nature 513
18.6 New Challenges, New Forms of Governance 513
18.7 A Nested and Progressive Governance Approach Building on Existing Frameworks and Instruments 514
18.8 Ecologically or Biologically Significant Areas: An Inter-Institutional Process 516
18.9 Very Large Marine-Protected Areas: Experimenting Large-Scale Integrated Management 519
18.10 The Primacy of a Regional Approach 520
18.11 Knowledge and Expertise 520
18.12 Ocean Literacy 521
18.13 Conclusion: The Way Forward 522
References 524
Correction to: Composition, Formation, and Occurrence of Polymetallic Nodules 526
Index 527
Erscheint lt. Verlag | 28.3.2017 |
---|---|
Zusatzinfo | X, 535 p. 270 illus., 131 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Naturwissenschaften ► Geowissenschaften ► Mineralogie / Paläontologie | |
Technik ► Maschinenbau | |
Schlagworte | benthic biodiversity • cobalt-rich manganese crusts • deep sea mining • Environmental Impact Assessment • marine and freshwater sciences • marine mineral deposits • metallurgical processing • Mineral Resources • Polymetallic Nodules • rare earth metals • seafloor sulfide deposits |
ISBN-10 | 3-319-52557-3 / 3319525573 |
ISBN-13 | 978-3-319-52557-0 / 9783319525570 |
Haben Sie eine Frage zum Produkt? |
Größe: 23,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich