Biocatalysis and Nanotechnology
Pan Stanford Publishing Pte Ltd (Verlag)
978-981-4613-69-9 (ISBN)
Peter Grunwald studied chemistry at the University of Saarbrücken and the University of Hamburg, Germany, where he graduated in the field of high-frequency spectroscopy, and then became a staff member of the Institute of Physical Chemistry. After receiving his PhD in physical chemistry from the Department of Chemistry at the University of Hamburg, he founded a biotechnology research group. He was appointed professor in 2001. His research interests focus on the preparation and properties of immobilized enzymes, kinetics of enzymes in organic solvents, and interactions between biocatalysts and heavy metal ions. Prof. Grunwald is also interested in chemical education, including curriculum development.
Fundamentals of Nanotechnology. Biocatalysis: An Introduction. Environmentally Benign Nanomaterial Synthesis Mediated by Culture Broths. Rational Design of Enzyme-Polymer Biocatalysts. Biological Strategies in Nanobiocatalyst Assembly. Graphene-Based Nanobiocatalytic System. Immobilization of Biocatalysts onto Nanosupports: Advantages for Green Technologies. Enzyme Immobilization on Membrane and Its Application in Bioreactors. Potential Applications of Nanobiocatalysis for Industrial Biodiesel Production. Enzymogel Nanoparticles Chemistry for Highly Efficient Phase Boundary Biocatalysis. Recent Advances in Nanostructured Enzyme Catalysis for Chemical Synthesis in Organic Solvents. Probing Enzymatic Activity by Combining Luminescent Quantum Dots, Gold Nanoparticles and Energy Transfer. FRET Reporter Molecules for Identification of Enzyme Functions. Quantum Dot Architectures on Electrodes for Photoelectrochemical Analyte Detection. Inorganic Nanoparticles as Enzyme Mimics. Enzyme Nanocapsules for Glucose Sensing and Insulin Delivery. Nanostructured Materials for Enzymatic Biofuel Cells. Enzymatic Biofuel Cells on Porous Nanostructures. Nanoplasmonic Biosensors. Enzyme Biocomputing: Logic Gates and Logic Networks to Interface and Control Materials. Functional Nano-Bio Conjugates for Targeted Cellular Uptake and Specific Nanoparticle–Protein Interactions. Cell-Free Expression–Based Microarrays: Applications and Future Prospects. Overview of the Current Knowledge and Challenges Associated With Human Exposure to Nanomaterials.
Erscheinungsdatum | 12.08.2017 |
---|---|
Reihe/Serie | Jenny Stanford Series on Biocatalysis |
Zusatzinfo | 23 Tables, black and white; 92 Illustrations, color; 123 Illustrations, black and white |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 1512 g |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Technik ► Maschinenbau | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 981-4613-69-X / 981461369X |
ISBN-13 | 978-981-4613-69-9 / 9789814613699 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich