Classification, Parameter Estimation and State Estimation (eBook)
480 Seiten
John Wiley & Sons (Verlag)
978-1-119-15244-6 (ISBN)
The past decade has witnessed epic growth in image processing and intelligent computer vision technology. Advancements in machine learning methods--especially among adaboost varieties and particle filtering methods--have made machine learning in intelligent computer vision more accurate and reliable than ever before. The need for expert coverage of the state of the art in this burgeoning field has never been greater, and this book satisfies that need. Fully updated and extensively revised, this 2nd Edition of the popular guide provides designers, data analysts, researchers and advanced post-graduates with a fundamental yet wholly practical introduction to intelligent computer vision. The authors walk you through the basics of computer vision, past and present, and they explore the more subtle intricacies of intelligent computer vision, with an emphasis on intelligent measurement systems. Using many timely, real-world examples, they explain and vividly demonstrate the latest developments in image and video processing techniques and technologies for machine learning in computer vision systems, including:
* PRTools5 software for MATLAB--especially the latest representation and generalization software toolbox for PRTools5
* Machine learning applications for computer vision, with detailed discussions of contemporary state estimation techniques vs older content of particle filter methods
* The latest techniques for classification and supervised learning, with an emphasis on Neural Network, Genetic State Estimation and other particle filter and AI state estimation methods
* All new coverage of the Adaboost and its implementation in PRTools5.
A valuable working resource for professionals and an excellent introduction for advanced-level students, this 2nd Edition features a wealth of illustrative examples, ranging from basic techniques to advanced intelligent computer vision system implementations. Additional examples and tutorials, as well as a question and solution forum, can be found on a companion website.
Professor Bangjun Lei, Dr. Guangzhu Xu, and Dr. Ming Feng are with The Institute of Intelligent Vision and Image Information, China Three Gorges University, China. Professor Yaobin Zou is an associate professor at China Three Gorges University. Dr. Ferdinand van der Heijden, Ph.D., is on the faculty of theDepartment of Signals and Systems, University of Twente, Netherlands. Professor Dick de Ridder is Professor at the Bioinformatics lab at Wageningen University, Netherlands. Professor David M. J. Tax, is a researcher with the Pattern Recognition laboratory, Delft University of Technology.
Preface xi
About the Companion Website xv
Introduction 1
1.1 The Scope of the Book 2
1.2 Engineering 10
1.3 The Organization of the Book 12
1.4 Changes from First Edition 14
1.5 References 15
PRTools Introduction 17
2.1 Motivation 17
2.2 Essential Concepts 18
2.3 PRTools Organization Structure and Implementation 22
2.4 Some Details about PRTools 26
2.5 Selected Bibliography 42
Detection and Classification 43
3.1 Bayesian Classification 46
3.2 Rejection 62
3.3 Detection:The Two-Class Case 66
3.4 Selected Bibliography 74
Exercises 74
Parameter Estimation 77
4.1 Bayesian Estimation 79
4.2 Performance Estimators 94
4.3 Data Fitting 100
4.4 Overview of the Family of Estimators 110
4.5 Selected Bibliography 111
Exercises 112
State Estimation 115
5.1 A General Framework for Online Estimation 117
5.2 Infinite Discrete-Time State Variables 125
5.3 Finite Discrete-Time State Variables 147
5.4 Mixed States and the Particle Filter 163
5.5 Genetic State Estimation 170
5.6 State Estimation in Practice 183
5.7 Selected Bibliography 201
Exercises 204
Supervised Learning 207
6.1 Training Sets 208
6.2 Parametric Learning 210
6.3 Non-parametric Learning 217
6.4 Adaptive Boosting - Adaboost 245
6.5 Convolutional Neural Networks (CNNs) 249
6.6 Empirical Evaluation 252
6.7 Selected Bibliography 257
Exercises 257
Feature Extraction and Selection 259
7.1 Criteria for Selection and Extraction 261
7.2 Feature Selection 272
7.3 Linear Feature Extraction 288
7.4 References 300
Exercises 300
Unsupervised Learning 303
8.1 Feature Reduction 304
8.2 Clustering 320
8.3 References 345
Exercises 346
Worked Out Examples 349
9.1 Example on Image Classification with PRTools 349
9.2 Boston Housing Classification Problem 361
9.3 Time-of-Flight Estimation of an Acoustic Tone Burst 372
9.4 Online Level Estimation in a Hydraulic System 392
9.5 References 406
Appendix A: Topics Selected from Functional Analysis 407
Appendix B: Topics Selected from Linear Algebra and Matrix Theory 421
Appendix C: Probability Theory 437
Appendix D: Discrete-Time Dynamic Systems 453
Index 459
Erscheint lt. Verlag | 3.3.2017 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mustererkennung • Pattern Analysis • Signal Processing • Signalverarbeitung |
ISBN-10 | 1-119-15244-5 / 1119152445 |
ISBN-13 | 978-1-119-15244-6 / 9781119152446 |
Haben Sie eine Frage zum Produkt? |
Größe: 20,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich