Quantum Plasmonics (eBook)

eBook Download: PDF
2016 | 1st ed. 2017
XVII, 327 Seiten
Springer International Publishing (Verlag)
978-3-319-45820-5 (ISBN)

Lese- und Medienproben

Quantum Plasmonics -
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale. 



CV of Prof. S. I. Bozhevolnyi

Sergey I. Bozhevolnyi has received the degrees of M.Sc. in physics (1978) and Ph.D. in quantum electronics (1981) from the Moscow Physical Technical Institute, a.k.a. 'FizTech', and Dr.Scient. from Aarhus University, Denmark (1998). He has been working at Aalborg University (Denmark) in 1991-2008. During 2001-2004, he was also the Chief Technical Officer (CTO) of Micro Managed Photons A/S set up to commercialize plasmonic waveguides. Since February 2008 he is a professor at the University of Southern Denmark (Odense), heading since 2013 the Centre for Nano Optics. His research interests include linear and nonlinear nano-optics and nanophotonics, including multiple light scattering phenomena, surface plasmon polaritons and nano-plasmonic circuits. He has (co-) authored more than 400 scientific publications in peer-reviewed journals (citations > 12000, h-index: 50). Prof. Bozhevolnyi is a Fellow of the Optical Society of America.

 

CV of Prof. L. Martin-Moreno

Luis Martin-Moreno has received the degrees of M.Sc. in physics (1985) and Ph.D. (1989) from Universidad Autonoma de Madrid (Spain). He has been working at Universidad Autonoma de Madrid and Universidad de Zaragoza, before becoming a Professor at the Instituto de Ciencia de Materiales de Aragon (Consejo Superior de Investigaciones Cienticas) since 2008. His research interests include theoretical electrodynamics and solid-state physics, including plasmonics, metamaterials, acoustics and graphene. He has (co-) authored more than 210 scientific publications in peer-reviewed journals (citations > 11900, h-index: 52). Prof. L. Martin-Moreno was selected in 2014 as Highly Cited Researcher by Thomson Reuters based on the scientific publications during the previous 10 years.

 

CV of Prof. F. J. García-Vidal

Francisco J. García-Vidal has received the degrees of M.Sc. in physics (1988) and Ph.D. (1992) from Universidad Autonoma de Madrid (Spain). He has been working at Universidad Autonoma de Madrid since 1992, becoming a Full Professor in 2007, and as a guest researcher at Imperial College London, Université Louis Pasteur (Strasbourg) and University of California. His research interests include theoretical electrodynamics and solid-state physics, including plasmonics, metamaterials, acoustics and graphene. He has (co-) authored more than 210 scientific publications in peer-reviewed journals (citations > 13900, h-index: 53). Prof. F. J. García-Vidal was selected in 2014 for the list of the 144 most influential physicists of the decade 2002-2012 elaborated by Thomson Reuters.



CV of Prof. S. I. Bozhevolnyi Sergey I. Bozhevolnyi has received the degrees of M.Sc. in physics (1978) and Ph.D. in quantum electronics (1981) from the Moscow Physical Technical Institute, a.k.a. “FizTech”, and Dr.Scient. from Aarhus University, Denmark (1998). He has been working at Aalborg University (Denmark) in 1991-2008. During 2001–2004, he was also the Chief Technical Officer (CTO) of Micro Managed Photons A/S set up to commercialize plasmonic waveguides. Since February 2008 he is a professor at the University of Southern Denmark (Odense), heading since 2013 the Centre for Nano Optics. His research interests include linear and nonlinear nano-optics and nanophotonics, including multiple light scattering phenomena, surface plasmon polaritons and nano-plasmonic circuits. He has (co-) authored more than 400 scientific publications in peer-reviewed journals (citations > 12000, h-index: 50). Prof. Bozhevolnyi is a Fellow of the Optical Society of America.   CV of Prof. L. Martin-Moreno Luis Martin-Moreno has received the degrees of M.Sc. in physics (1985) and Ph.D. (1989) from Universidad Autonoma de Madrid (Spain). He has been working at Universidad Autonoma de Madrid and Universidad de Zaragoza, before becoming a Professor at the Instituto de Ciencia de Materiales de Aragon (Consejo Superior de Investigaciones Cienticas) since 2008. His research interests include theoretical electrodynamics and solid-state physics, including plasmonics, metamaterials, acoustics and graphene. He has (co-) authored more than 210 scientific publications in peer-reviewed journals (citations > 11900, h-index: 52). Prof. L. Martin-Moreno was selected in 2014 as Highly Cited Researcher by Thomson Reuters based on the scientific publications during the previous 10 years.   CV of Prof. F. J. García-Vidal Francisco J. García-Vidal has received the degrees of M.Sc. in physics (1988) and Ph.D. (1992) from Universidad Autonoma de Madrid (Spain). He has been working at Universidad Autonoma de Madrid since 1992, becoming a Full Professor in 2007, and as a guest researcher at Imperial College London, Université Louis Pasteur (Strasbourg) and University of California. His research interests include theoretical electrodynamics and solid-state physics, including plasmonics, metamaterials, acoustics and graphene. He has (co-) authored more than 210 scientific publications in peer-reviewed journals (citations > 13900, h-index: 53). Prof. F. J. García-Vidal was selected in 2014 for the list of the 144 most influential physicists of the decade 2002-2012 elaborated by Thomson Reuters.

Preface 6
References 7
Contents 9
Contributors 15
1 Input-Output Formalism for Few-Photon Transport 18
1.1 Introduction 18
1.2 Hamiltonian and Input-Output Formalism 19
1.3 Quantum Causality Relation 22
1.4 Connection to Scattering Theory 25
1.5 Single-Photon Transport 27
1.6 Two-Photon Transport 29
1.7 Example: A Waveguide Coupled to a Kerr-Nonlinear Cavity 31
1.8 Wavefunction Approach 33
1.9 Conclusion 36
References 39
2 Quadrature-Squeezed Light from Emitters in Optical Nanostructures 41
2.1 Introduction 41
2.1.1 Quadrature-Squeezed Light 43
2.1.2 Detection Schemes 43
2.1.3 Squeezed Light sources 44
2.2 Theoretical Description 46
2.2.1 Macroscopic Quantum Electrodynamics 46
2.2.2 The Optical Bloch Equations 47
2.2.3 Squeezed Resonance Fluorescence 48
2.3 Quadrature Squeezing Assisted by Nanostructures 49
2.3.1 A Single Emitter Coupled to a Nanostructure 49
2.3.2 Cooperative Quadrature Squeezing 56
2.4 Conclusions and Outlook 60
References 61
3 Coupling of Quantum Emitters to Plasmonic Nanoguides 63
3.1 Introduction 63
3.2 Theory of Coupling an Emitter to a Plasmonic Waveguide 64
3.2.1 Modes in Plasmonic Waveguides 65
3.2.2 Theory of Coupling 67
3.3 Experimental Demonstrations of Coupling a Quantum Emitter to Plasmonic Nanoguides 72
3.3.1 Quantum Emitters 72
3.3.2 Coupling of Quantum Emitters to Plasmonic Waveguides 76
3.4 Conclusion and Outlook 84
References 85
4 Controlled Interaction of Single Nitrogen Vacancy Centers with Surface Plasmons 88
Abstract 88
4.1 Introduction 88
4.2 Scanning Probe Assembly 89
4.2.1 Control of Emission Dynamics Through Plasmon Coupling 90
4.2.2 Coupling of NV Centers to Propagating Surface Plasmons 93
4.3 Optical Trapping as a Positioning Tool 102
4.3.1 Experimental Platform to Optically Trap a Single NV Center 103
4.3.2 Surface Plasmon Based Trapping 104
4.4 Conclusions and Outlook 108
Acknowledgements 109
References 109
5 Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers 111
Abstract 111
5.1 Introduction 112
5.2 Fundamentals of Hyperbolic Metamaterials 113
5.3 Enhancement of Single-Photon Emission from Color Centers in Diamond 114
5.3.1 Calculations of NV Emission Enhancement by HMM 117
5.3.2 Experimental Demonstration of HMM Enhanced Single-Photon Emission 118
5.3.3 Increasing Collection Efficiency by Outcoupling High-k Waves to Free Space 120
5.4 Lasing Action with Nanorod Hyperbolic Metamaterials 122
5.4.1 Purcell Effect Calculations for Dye Molecules on Nanorod Metamaterials 125
5.4.2 Experimental Demonstration of Lasing with Nanorod Metamaterials 127
5.5 Summary 129
Acknowledgements 129
Appendix: Semi-analytical Calculations of the Purcell Factor and Normalized Collected Emission Power 129
References 131
6 Strong Coupling Between Organic Molecules and Plasmonic Nanostructures 135
6.1 Introduction 135
6.2 Theoretical Background 138
6.2.1 Classical Approach 138
6.2.2 Semi-Classical Approach 140
6.2.3 Fully Quantum-Mechanical Approach 142
6.3 Coupling of Organic Molecules with Plasmonic Structures 143
6.4 Dynamics of Strong Coupling 145
6.4.1 Frequency Domain 146
6.4.2 Time Domain 147
6.5 Surface Lattice Resonances 148
6.5.1 Empty Lattice Approximation 149
6.5.2 Lattice of Point Dipoles 151
6.5.3 Band Gap Formation in SLR Dispersions 154
6.6 Strong Coupling in Nanoparticle Arrays 155
6.6.1 Spectral Transmittance Experiments 156
6.6.2 Spatial Coherence of Strongly Coupled Hybrid Modes 159
6.7 Outlook 161
References 162
7 Polariton Condensation in Organic Semiconductors 165
Abstract 165
7.1 Introduction 165
7.2 What Is a Condensate? 166
7.3 Planar Microcavity Structures 167
7.4 Polariton Relaxation 170
7.5 Condensate Formation 172
7.6 Condensate Coherence 174
7.7 Conclusions 176
References 177
8 Plasmon Particle Array Lasers 178
Abstract 178
8.1 Introduction 179
8.2 Experiments on Plasmon Lattice Laser 180
8.2.1 Samples and Experimental Methods 180
8.2.2 Input-Output Curves, Thresholds and Fourier Space 182
8.3 Theory of Plasmon Lattices Coupled to Stratified Media 184
8.3.1 Two-Dimensional Periodic Arrays, Folded Dispersion, and the “Nearly Free-Photon” Approximation 185
8.3.2 Surface Lattice Resonances 186
8.3.3 Semi-analytical Approach: Polarizability and Lattice Sums 187
8.3.4 Theoretical Model—Results 191
8.3.5 Stop Gap and Band Crossing 193
8.4 Open Questions for Periodic Plasmon Lasers 194
8.5 Scattering, Aperiodic and Finite Lasers 195
8.6 Conclusions 198
Acknowledgements 198
Appendix A: 1D Green’s Function 198
Appendix B: Ewald Summation 199
References 201
9 Surface Plasmon Enhanced Schottky Detectors 204
Abstract 204
9.1 Introduction 204
9.2 SPPs and Photodetection Mechanisms 205
9.3 Grating Detectors 209
9.4 Nanoparticle and Nanoantenna Detectors 212
9.5 Waveguide Detectors 215
9.6 Summary and Prospects 220
References 221
10 Antenna-Coupled Tunnel Junctions 223
10.1 Introduction 223
10.2 Theoretical Framework 225
10.2.1 Historical Survey 225
10.2.2 Photon Emission: A Two-Step Process 225
10.2.3 Tunneling Rates 226
10.3 Coupling Tunnel Junctions to Free Space 232
10.3.1 Macroscopic Solid State Tunnel Devices 232
10.3.2 Scanning Tunneling Microscope 236
10.3.3 Antenna-Coupled Tunnel Junctions 237
10.3.4 Conclusion 242
10.4 Outlook 242
10.4.1 Ultrafast Photon/SPP Sources 242
10.4.2 LDOS and Impedance Matching Optimization 242
10.4.3 Beyond MIM Devices 244
10.4.4 Resonant Tunneling 244
10.4.5 Stimulated Emission 244
10.4.6 Beyond Visible Light Emission 245
10.5 Summary 245
References 245
11 Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersion 249
Abstract 249
11.1 Introduction 250
11.2 Nonlocal Effective Medium Theory 252
11.2.1 Calculation of E_{z} and H_{z} 253
11.2.2 Calculation of {/varvec E}_{{/varvec r}}, {/varvec H}_{{/varvec r}}, {/varvec E}_{/phi }, and {/varvec H}_{/phi } 254
11.2.3 Applying the Boundary Conditions at {/varvec r} /equal {/varvec R} 256
11.2.4 Dispersion of the Longitudinal Mode 258
11.2.5 Solutions at Oblique Angles 261
11.2.6 Wave Profiles at Oblique Angles 264
11.2.7 Simplified Approach to Nonlocal Effective Medium Theory 265
11.2.8 Nonlocal Transfer Matrix Method 266
11.3 Dipole Emission in Nonlocal Metamaterials 270
11.3.1 Plane Wave Expansion of Green’s Function in Homogeneous Material 273
11.3.2 Spontaneous Decay Rates Near Planar Interfaces 277
11.3.3 Emission in Lossless Metamaterials and Local Field Corrections 279
11.3.4 Effects of Finite Material Absorption 281
11.3.5 Non-Local Field Correction Approach 281
11.4 Experimental Results on Collective Purcell Enhancement 283
11.5 Conclusion 286
Acknowledgements 286
References 286
12 Nonlocal Response in Plasmonic Nanostructures 290
12.1 Introduction 290
12.2 Linear-Response Theory 292
12.3 Linear-Response Electrodynamics 295
12.4 Hydrodynamic Drift-Diffusion Theory 296
12.5 Boundary Conditions 299
12.6 Numerical Implementations 300
12.7 Characteristic Material Parameters 302
12.8 A Unifying Description of Monomers and Dimers 303
12.9 The Origin of Diffusion: Insight from ab Initio studies 307
12.10 Conclusions and Outlook 310
References 311
13 Landau Damping—The Ultimate Limit of Field Confinement and Enhancement in Plasmonic Structures 314
Abstract 314
13.1 Introduction 314
13.2 Spill Out and Nonlocality in the Hydrodynamic Model 316
13.3 Landau Damping as the Cause of Nonlocality 317
13.4 Limits of Confinement in Propagating SPP 322
13.5 Landau (Surface Collision) Damping in Multipole Modes of Spherical Nanoparticles 325
13.6 Impact of Landau (Surface Collision) Damping on Field Enhancement in Dimer 328
13.7 Conclusions 331
References 332
Index 334

Erscheint lt. Verlag 26.11.2016
Reihe/Serie Springer Series in Solid-State Sciences
Springer Series in Solid-State Sciences
Zusatzinfo XVII, 327 p. 139 illus., 74 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte active surface plasmon photonics • graphene for quantum plasmonics • lasing in plasmonic structures • plasmonic nanostructures • quantum effects in nanogaps • quantum emitters • quantum properties of light • waveguide quantum electrodynamics
ISBN-10 3-319-45820-5 / 3319458205
ISBN-13 978-3-319-45820-5 / 9783319458205
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Von Energie und Entropie zu Wärmeübertragung und Phasenübergängen

von Rainer Müller

eBook Download (2023)
De Gruyter (Verlag)
54,95