Rubber Nano Blends (eBook)

Preparation, Characterization and Applications
eBook Download: PDF
2016 | 1st ed. 2017
VI, 349 Seiten
Springer International Publishing (Verlag)
978-3-319-48720-5 (ISBN)

Lese- und Medienproben

Rubber Nano Blends -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book summarizes the preparation, characterization and applications of rubber based nano blends. Rubbers from natural and synthetic polymers and their blends are discussed in the individual chapters, including nitrile, polyurethane, chlorosulphonated, polybutadiene, styrene butadiene, polychloroprene rubbers. In each chapter, contributors from academia and industry describe the preparation and characterization of the rubber blends. Therefore, a variety of characterization methods like tensile testing, differential scanning calorimetry, dynamical mechanical analysis, thermogravimetric analysis, electron microscopy, scattering and diffraction techniques, and rheology measurements are utilized. The authors evaluate the properties of the different materials and discuss numerous fields of application, ranging from biomedicine, packaging, coatings and automobile to aerospace.

Gordana Markovic has received her PhD in 2004 at the Faculty of Natural Science and Mathematics, University of Nis. She is employed as a engineer of quality in the factory 'Tigar Technical Rubber' in Pirot, Serbia since 1990.  In 2010, she became Senior Researcher. She published 138 publications, 2 book chapters and 12 reviews. She presented on more than 20 conferences. Her research interests include rubber, polymer nanocomposites and polymer blends.

Dr. Visakh P.M. (MSc, MPhil, PhD) is a prolific editor with more than 20 books already published. Currently he is working as Research Associate (under the guidance of Prof. Olga B. Nazarenko) in the Department of Ecology and Basic Safety, Tomsk Polytechnic University (TPU), Tomsk, Russia. He obtained his PhD, MPhil and MSc degrees from the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. He edited 20 books with Springer, Wiley, Royal Society of Chemistry and Elsevier, and more than 12 books are in press. He has been invited as a visiting researcher in Russia, Portugal, Czech Republic, Italy, Argentina, Sweden, Switzerland, Spain, Slovenia, France, Belgium and Austria for his research work. He published 13 articles, 3 reviews and more than 18 book chapters. He has attended and presented on more than 28 conferences. He has 304 citations and his h-index is 9. He acts as guest editor for four international journals. His research interests include polymer nanocomposites, bio-nanocomposites, rubber-based nanocomposites, fire retardant polymers, liquid crystalline polymers and silicon sensors.

Gordana Markovic has received her PhD in 2004 at the Faculty of Natural Science and Mathematics, University of Nis. She is employed as a engineer of quality in the factory "Tigar Technical Rubber" in Pirot, Serbia since 1990.  In 2010, she became Senior Researcher. She published 138 publications, 2 book chapters and 12 reviews. She presented on more than 20 conferences. Her research interests include rubber, polymer nanocomposites and polymer blends.Dr. Visakh P.M. (MSc, MPhil, PhD) is a prolific editor with more than 20 books already published. Currently he is working as Research Associate (under the guidance of Prof. Olga B. Nazarenko) in the Department of Ecology and Basic Safety, Tomsk Polytechnic University (TPU), Tomsk, Russia. He obtained his PhD, MPhil and MSc degrees from the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. He edited 20 books with Springer, Wiley, Royal Society of Chemistry and Elsevier, and more than 12 books are in press. He has been invited as a visiting researcher in Russia, Portugal, Czech Republic, Italy, Argentina, Sweden, Switzerland, Spain, Slovenia, France, Belgium and Austria for his research work. He published 13 articles, 3 reviews and more than 18 book chapters. He has attended and presented on more than 28 conferences. He has 304 citations and his h-index is 9. He acts as guest editor for four international journals. His research interests include polymer nanocomposites, bio-nanocomposites, rubber-based nanocomposites, fire retardant polymers, liquid crystalline polymers and silicon sensors.

Contents 6
1 Rubber Nanoblends: State of the Art, New Challenges, and Opportunities 8
Abstract 8
1.1 Natural Rubber Nanoblends 8
1.2 Nitrile Rubber Latex Blends 10
1.3 Polyurethane Rubber-Based Nanoblends 11
1.4 Chlorosulphonated Rubber-Based Nanoblends 11
1.5 Polybutadiene Rubber-Based Nanoblends 13
1.6 Styrene Butadiene Rubber-Based Nanoblends 14
1.7 Polychloroprene Rubber-Based Nanoblends 15
1.8 Ethylene Propylene Diene Rubber-Based Nanoblends 17
References 18
2 Natural Rubber Nanoblends: Preparation, Characterization and Applications 21
Abstract 21
2.1 Introduction 22
2.2 Recent Works on Natural Rubber Blends 24
2.3 Preparation of Natural Rubber Nanoblends 29
2.3.1 Skim Latex Mixing 29
2.3.2 Latex/Melt Intercalation Method 30
2.3.3 Freeze-Drying 30
2.3.4 In Situ Non-aqueous Sol–Gel Method 31
2.4 Characterization of Nanofillers and Natural Rubber Nanoblends 32
2.4.1 X-ray Diffractometry (XRD) 33
2.4.2 X-ray Photoelectron Spectroscopy (XPS) 36
2.4.3 X-Ray Fluorescence Spectroscopy (XRF) 40
2.4.4 UV–Visible Spectroscopy 40
2.4.5 Photoluminescence Spectroscopy 43
2.4.6 Raman Spectroscopy 44
2.4.7 Thermogravimetric Analysis and Differential Thermal Analysis (TGA-DTA) 47
2.4.8 Scanning Electron Microscopy-Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) 49
2.4.9 Electron Probe Microanalyzer (EPMA) 50
2.4.10 Transmission Electron Microscopy-Selected Area Electron Diffraction (TEM-SAED) 53
2.4.11 Vibrating Sample Magnetometry (VSM) 56
2.4.12 Fourier Transform Infrared Spectroscopy (FTIR) 57
2.5 Novel Nanofillers for Developing NRNs and Their Applications 58
2.5.1 Carbon Black 59
2.5.2 Clay 60
2.5.3 Carbon Nanotubes 61
2.5.4 Iron Oxide 62
2.5.5 Zinc Oxide 63
2.5.6 Nickel 64
2.5.7 Silica 64
2.5.8 Graphene 66
2.5.9 Gold and Silver Metal Nanoparticles 67
2.6 Summary and Outlook 68
References 69
3 Nitrile Rubber Latex Blends: Preparation, Characterization and Applications 72
Abstract 72
3.1 Historical Background 73
3.2 Introduction 74
3.2.1 Latex Rubber Characteristics 74
3.2.2 Category of Rubbers Commonly Used in the Rubber Blend 75
Acrylonitrile–Butadiene Rubber (NBR) 75
Hydrogenated Nitrile Rubber (HNBR) 76
Carboxylated Nitrile Rubber (XNBR) 78
Hydrogenated Carboxylated Nitrile Rubber (HXNBR) 78
Natural Rubber (NR) 79
Styrene–Butadiene Rubber (SBR) 80
Chloroprene Rubber (CR) 81
Polyvinyl Chloride (PVC) 81
3.3 Nitrile Rubber Latex-Based Blends 81
3.3.1 NR and NBR Latexes Blend 81
3.3.2 HXNBR and PVC Latex Blend 82
3.3.3 Nitrile Rubber Latex Blends with Nanofillers 83
3.4 Preparation Techniques of Nitrile Rubber Latex-Based Blends 84
3.5 Characterization of Nitrile Rubber Latex-Based Blends 84
3.5.1 X-ray Diffraction (XRD) 84
3.5.2 Fourier Transform Infrared Spectroscopy (FTIR) 85
3.5.3 Dynamic Light Scattering (DLS) 87
3.5.4 Thermogravimetric Analysis (TGA) 88
3.5.5 Microscopy 89
Transmission Electron Microscopy (TEM) 89
Scanning Electron Microscopy (SEM) 90
3.6 Applications of Nitrile Rubber Latex-Based Blends 91
References 91
4 Polyurethane Rubber-Based Nanoblends: Preparation, Characterization and Applications 94
Abstract 94
4.1 Introduction 94
4.2 Preparation of Polyurethane Rubber Nanoblends 97
4.2.1 Materials 97
Polymer Resin 97
Nanoparticles 97
4.2.2 Preparation of Polyurethane Rubber (TPUR) or TPU Nanoblends 98
4.3 Characterizations of Polyurethane Rubber Nanoblends 99
4.3.1 Melt Intercalation 101
4.4 New Challenges of Polyurethane Rubber Nanoblends 104
4.5 Recent Advances on Polyurethane Rubber Nanoblends 105
4.6 Industrial Values and Applications 105
4.7 Conclusions 106
References 106
5 Chlorosulfonated Rubber-Based Nanoblends: Preparation, Characterization and Applications 109
Abstract 109
5.1 Introduction 110
5.2 Preparation 112
5.3 Characterization 113
5.3.1 Cure Characteristics 113
5.3.2 Mechanical Properties 115
5.3.3 Hardness Measurements 115
5.3.4 Swelling Measurements and Cross-linking Density Determination 115
5.3.5 Morphological Study Using a Scanning Electron Microscope 117
5.3.6 Thermal Stability 117
5.3.7 DSC Measurements of Rubber Blends 117
5.3.8 Dynamic Mechanical Analysis (DMA) 118
5.3.9 FTIR Analysis 118
5.4 New Challenges 118
5.4.1 Nano- and Micro-silica-Filled CR/CSM Rubber Blends 118
5.4.2 Cure Characteristics 119
5.4.3 IR Spectral Analysis 119
5.4.4 Mechanical Properties 120
5.4.5 Dynamic Mechanical Analysis 122
5.4.6 Cross-linking Density 123
Morphology Microscopic Studies 126
5.4.7 SBR/CSM/ Carbon Black Rubber Composites 127
5.4.8 Mechanical Properties 127
5.4.9 NR/CSM and NBR/CSM Rubber Blends Reinforced by Carbon Black 132
5.4.10 Cure Characteristics 133
5.4.11 Electron Scanning Microscopy 138
5.4.12 FTIR Spectra Measurements 138
5.4.13 CSM/IIR and CSM/CIIR Rubber Blend 141
5.4.14 Mechanical Properties 144
5.4.15 Swelling Properties 146
5.4.16 Morphological Study 147
5.5 Recent Advances on Chlorosulfonated Rubber Nano-blends 147
5.5.1 Thermal Stability 148
5.6 Industrial Values and Applications 149
5.6.1 CSM/SMR 20 CV and CSM/Pergut S 40 Rubber Blends 149
Scorch Time 150
Cure Index 151
5.7 Conclusion 153
Acknowledgments 155
References 155
6 Polybutadiene Rubber-Based Nanoblends (PBR-nB): Preparation, Characterization and Applications 158
Abstract 158
6.1 Introduction 158
6.1.1 History 158
6.1.2 Blends of Elastomers, Polymers, and Rubbers 159
6.1.3 Present Scenario on PBR-Based Nanostructured Composites and Blends 159
6.2 Preparation Methods 163
6.2.1 PBR/SBR/Nanosilica 164
6.2.2 hPBR/PP 164
6.2.3 Recycled PBR/(HDPE-LDPE-TiO2)/PET Blend 164
6.2.4 PBR/MA-g-EPDM 165
6.2.5 PBR/PS/Vinyl Nanoclay 165
6.2.6 PBR/NR/Nanoclay 166
6.2.7 PBR/PS/Epoxy Resin and PBR/PS/Nanosilica 166
6.2.8 PBR/SBR/MWCNT 167
6.2.9 PBR/NR/RR/Nanosilica 167
6.2.10 PBR/PS/Nanoclay 168
6.2.11 PBR/NR/Nanofiller 168
6.2.12 PBR/BIMS/Nanosilica/Carbon Black 169
6.2.13 PBR/NR/OMMT 169
6.2.14 PBR/SBR/Graphite Nanoplatelets 169
6.3 Tensile Testing 170
6.4 Differential Scanning Calorimeter Studies 174
6.5 Dynamical Mechanical Analysis 179
6.6 Thermo-Gravimetric Analysis Studies 183
6.7 Scanning Electron Microscopy Studies 187
6.8 Transmission Electron Microscopy Studies 190
6.9 Neutron Scattering Studies 193
6.10 Rheological Studies 196
6.11 Electrical Properties 202
6.12 Permeability Studies 203
6.13 New Challenges 203
6.14 Recent Advances 204
6.15 Industrial Values 204
6.16 Applications Studies 205
6.17 Conclusions 206
References 208
7 Styrene–Butadiene Rubber-Based Nanoblends (SBR-nB): Preparation, Characterization and Applications 211
Abstract 211
7.1 Introduction 212
7.2 Preparation of Styrene–Butadiene Rubber Nanoblends 213
7.2.1 Latex Blending Technique 214
NR/SBR/Clay Blend 214
Unique Latex Blending Technique 214
Conventional Latex Blending Technique 214
7.2.2 Melt Blending Technique 214
SBR/NBR/NR/CNT 214
7.2.3 Solution Blending Technique 215
NR/SBR/Clay Blend 215
7.2.4 Two-Roll Mill Blending 216
SBR/SiO2/Graphene Blend 216
7.3 Tensile Characterizations of Styrene–Butadiene Rubber Nanoblends 216
7.4 Thermal Properties of Styrene–Butadiene Rubber Nanoblends 219
7.5 Morphological Properties of Styrene–Butadiene Rubber Nanoblends 225
7.6 X-ray Diffraction Studies of Styrene–Butadiene Rubber Nanoblends 228
7.7 Spectroscopic Studies of Styrene–Butadiene Rubber Nanoblends 231
7.7.1 Nuclear Magnetic Resonance (NMR) 231
7.7.2 Fourier Transform Infrared Spectroscopy (FTIR) 233
7.8 Rheological Studies of Styrene–Butadiene Rubber Nanoblends 235
7.9 Viscoelastic Properties of Styrene–Butadiene Rubber Nanoblends 239
7.10 Electrical Properties of Styrene–Butadiene Rubber Nanoblends 241
7.11 Recent Advances on Styrene–Butadiene Rubber Nanoblends 245
7.12 Industrial Values and Applications 247
7.13 Conclusions 247
References 248
8 Polychloroprene Rubber-Based Nanoblends: Preparation, Characterization and Applications 251
Abstract 251
8.1 Introduction 252
8.2 Preparation of Polychloroprene Rubber Nanoblends 253
8.3 Characterizations of Polychloroprene Rubber Nanoblends 253
8.3.1 Determination of Cure Characteristics 253
8.4 New Challenges of Polychloroprene Rubber Nanoblends 257
8.4.1 One-Stage Vulcanization 258
8.4.2 Two-Stage Vulcanization 260
8.4.3 Dielectric Study 261
8.4.4 SEM Studies 262
8.5 Recent Advances on Polychloroprene Rubber Nanoblends 262
8.5.1 Characterization 263
8.6 Biomedical Application 269
8.7 Pacing Application 270
8.8 Structural Application of Polychloroprene Rubber Nanoblends 271
8.9 Military Application 273
8.10 Coating Industry of Polychloroprene Rubber Nanoblends 273
8.11 Aerospace Applications of Polychloroprene Rubber Nanoblends 275
8.12 Modifications of Polychloroprene Rubber-Based Nanoblends 275
8.13 Conclusion 279
Acknowledgments 279
References 279
9 Ethylene–Propylene–Diene Rubber-Based Nanoblends: Preparation, Characterization and Applications 282
Abstract 282
9.1 Introduction 283
9.2 Preparation of Ethylene–Propylene–Diene Rubber Nanoblends 287
9.3 Rheometric Characteristics of Ethylene–Propylene–Diene Rubber Nanoblends 289
9.4 Mechanical Properties of Ethylene–Propylene–Diene Rubber Nanoblends 291
9.5 Thermal Properties of Ethylene–Propylene–Diene Rubber Nanoblends 298
9.6 Degradation Kinetic Analysis of Ethylene–Propylene–Diene Rubber Nanoblends 304
9.6.1 Isoconversional (Model-Free) Methods 307
Kissinger–Akahira–Sunose (KAS) Method 307
Friedman (FR) Method 307
9.6.2 Model-Fitting Methods 308
Coats–Redfern Method 308
Invariant Kinetic Parameter (IKP) Method 308
9.6.3 Determination of the Most Probable Mechanism Function 309
Kinetic Method with the Use of the Special Function Z(?) 309
Integral “Master” Plot Method 309
Determination of the Pre-Exponential Factor (A) 310
9.7 DSC Measurement of Ethylene–Propylene–Diene Rubber Nanoblends 335
9.8 Morphological Studies of Ethylene–Propylene–Diene Rubber Nanoblends 337
9.9 Some Specific Applications of Ethylene–Propylene–Diene Rubber Nanoblends 339
9.10 Conclusions 343
Acknowledgments 344
References 345

Erscheint lt. Verlag 25.11.2016
Reihe/Serie Springer Series on Polymer and Composite Materials
Springer Series on Polymer and Composite Materials
Zusatzinfo VI, 349 p. 212 illus., 76 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Schlagworte Dynamical Mechanical Analysis • Elastomers • Electron Microscopy of Rubber • natural rubber • Natural Rubber Latex Blends • Packaging Applications of Rubber Blends • Polybutadiene Rubber • Polymer Blends • Polyurethane Rubber • Recycling and Lifetime of Rubber Blends • Rubber Macro Blends • Rubber Micro Blends • Rubber Nano Blends • Styrene Butadiene Rubber • Synthetic Rubber • Tensile Testing
ISBN-10 3-319-48720-5 / 3319487205
ISBN-13 978-3-319-48720-5 / 9783319487205
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99