FDTD Modeling of EM Field inside Microwave Cavities -  K. M. Divya,  V. Krushna Kanth,  Shiv Narayan

FDTD Modeling of EM Field inside Microwave Cavities (eBook)

eBook Download: PDF
2016 | 1st ed. 2017
XXV, 71 Seiten
Springer Singapore (Verlag)
978-981-10-3415-2 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.



Dr Shiv Narayan is currently associated with the Centre for Electromagnetics of CSIR-National Aerospace Laboratories (CSIR-NAL), Bangalore, India as Senior Scientist. He received Ph.D. degree in Electronics Engineering from Indian Institute of Technology, Banaras Hindu University (IIT-BHU), Varanasi, India in 2006. He held the position of Scientist B between 2007 and 2008, at SAMEER (Society for Applied Microwave Electronics Engineering and Research), Kolkata, India. His research interests are broadly in the field of electromagnetics applications; these include, frequency selective surfaces (FSS), metamaterials, numerical methods (FDTD and MM-GSM) in electromagnetics, antennas, and EM material characterization. He has published a SpringerBrief on FSS based high performance antennas in 2015. Dr Shiv is the author/ co-author of over 40 technical documents including peer reviewed journal and conference papers. 

Ms. K. M. Divya received her B. Tech. degree in Electronics and Communication Engineering from Calicut University, Kerala in 2010 and completed her M. Tech. degree in Microwave and Radar Electronics from Cochin University of Science and Technology (CUSAT), Kerala in 2013. Currently, she is with the Bharat Electronics Limited (BEL), Bangalore, India. She was associated with the Centre for Electromagnetics, CSIR-NAL as Project Scientist from Nov. 2013 to May 2015. Her research interest includes the topics; FDTD modelling, FSS, and metamaterials.

Mr. V. Krushna Kanth obtained his B.Tech (ECE) degree from Jawaharlal Nehru Technological University (JNTU), Anantapur, Andhra Pradesh, India in 2012. He obtained his M. Tech. degree in Electronics Engineering from Pondicherry Central University, Pondicherry (UT), India in 2015. He is currently a Project Assistant-III with the Centre for Electromagnetics of CSIR-National Aerospace Laboratories (CSIR-NAL), Bangalore, India. His current area of research interest includes; FSS, RCS field computation, and FDTD based modeling.


This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.

Dr Shiv Narayan is currently associated with the Centre for Electromagnetics of CSIR-National Aerospace Laboratories (CSIR-NAL), Bangalore, India as Senior Scientist. He received Ph.D. degree in Electronics Engineering from Indian Institute of Technology, Banaras Hindu University (IIT-BHU), Varanasi, India in 2006. He held the position of Scientist B between 2007 and 2008, at SAMEER (Society for Applied Microwave Electronics Engineering and Research), Kolkata, India. His research interests are broadly in the field of electromagnetics applications; these include, frequency selective surfaces (FSS), metamaterials, numerical methods (FDTD and MM-GSM) in electromagnetics, antennas, and EM material characterization. He has published a SpringerBrief on FSS based high performance antennas in 2015. Dr Shiv is the author/ co-author of over 40 technical documents including peer reviewed journal and conference papers.  Ms. K. M. Divya received her B. Tech. degree in Electronics and Communication Engineering from Calicut University, Kerala in 2010 and completed her M. Tech. degree in Microwave and Radar Electronics from Cochin University of Science and Technology (CUSAT), Kerala in 2013. Currently, she is with the Bharat Electronics Limited (BEL), Bangalore, India. She was associated with the Centre for Electromagnetics, CSIR-NAL as Project Scientist from Nov. 2013 to May 2015. Her research interest includes the topics; FDTD modelling, FSS, and metamaterials.Mr. V. Krushna Kanth obtained his B.Tech (ECE) degree from Jawaharlal Nehru Technological University (JNTU), Anantapur, Andhra Pradesh, India in 2012. He obtained his M. Tech. degree in Electronics Engineering from Pondicherry Central University, Pondicherry (UT), India in 2015. He is currently a Project Assistant-III with the Centre for Electromagnetics of CSIR-National Aerospace Laboratories (CSIR-NAL), Bangalore, India. His current area of research interest includes; FSS, RCS field computation, and FDTD based modeling.

Preface 7
Acknowledgements 8
Contents 9
Abbreviations 10
Symbols 11
List of Figures 12
List of Table 19
1 FDTD Modeling of EM Field Inside Microwave Cavities 20
1 Introduction 20
2 Finite Difference Time Domain Method 21
2.1 Maxwell’s Curl Equations 22
2.2 Yee’s Algorithm 23
2.3 Implementation of FDTD Method 24
3 Analysis of EM Field Distribution Inside the Microwave Oven 26
3.1 RF Leakage Radiation 27
3.2 EM Field Distribution Inside the Oven Cavity 29
4 Modeling of Curved Cavities Using FDTD 44
4.1 Validation of FDTD Modeling for Curved Structure 45
4.2 EM Analysis of Field Distribution Inside the Hybrid-Cylindrical Microwave Autoclave 46
4.2.1 EM Field Distribution Due to Single Magnetron Source 49
4.2.2 EM Field Distribution Due to Five Magnetron Sources 55
4.2.3 EM Field Distribution Inside the Autoclave Cavity in the Presence of Sample 76
5 Summary 81
References 82
Author Index 84
Subject Index 85
Authors Biography 86
About the Book 87

Erscheint lt. Verlag 21.12.2016
Reihe/Serie SpringerBriefs in Computational Electromagnetics
SpringerBriefs in Computational Electromagnetics
SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Electrical and Computer Engineering
Zusatzinfo XXV, 71 p. 99 illus., 95 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Optik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte 3D FDTD • EM field distribution • Finite-difference time-domain modeling • Microwave Autoclave • Microwave oven leakage • Microwave oven radiation • RF leakage
ISBN-10 981-10-3415-X / 981103415X
ISBN-13 978-981-10-3415-2 / 9789811034152
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Bahaa E. A. Saleh; Malvin Carl Teich

eBook Download (2020)
Wiley-VCH Verlag GmbH & Co. KGaA
84,99