Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition (eBook)

eBook Download: PDF
2016 | 1st ed. 2017
XXI, 199 Seiten
Springer International Publishing (Verlag)
978-3-319-45129-9 (ISBN)

Lese- und Medienproben

Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition - Yogambigai Velmurugu
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Using a novel approach that combines high temporal resolution of the laser T-jump technique with unique sets of fluorescent probes, this study unveils previously unresolved DNA dynamics during search and recognition by an architectural DNA bending protein and two DNA damage recognition proteins.

Many cellular processes involve special proteins that bind to specific DNA sites with high affinity.  How these proteins recognize their sites while rapidly searching amidst -3 billion nonspecific sites in genomic DNA remains an outstanding puzzle. Structural studies show that proteins severely deform DNA at specific sites and indicate that DNA deformability is a key factor in site-specific recognition. However, the dynamics of DNA deformations have been difficult to capture, thus obscuring our understanding of recognition mechanisms. 

The experiments presented in this thesis uncover, for the first time, rapid (-100-500 microseconds) DNA unwinding/bending attributed to nonspecific interrogation, prior to slower (-5-50 milliseconds) DNA kinking/bending/nucleotide-flipping during recognition. These results help illuminate how a searching protein interrogates DNA deformability and eventually 'stumbles' upon its target site. Submillisecond interrogation may promote preferential stalling of the rapidly scanning protein at cognate sites, thus enabling site-recognition.  Such multi-step search-interrogation-recognition processes through dynamic conformational changes may well be common to the recognition mechanisms for diverse DNA-binding proteins. 



Yogambigai Velmurugu was awarded the PhD degree by the University of Illinois, Chicago, in 2015. 

Yogambigai Velmurugu was awarded the PhD degree by the University of Illinois, Chicago, in 2015. 

I INTRODUCTION……………………………….. 1 1.1 Protein-DNA interactions …………… 1 1.2 Sequence-dependent DNA deformability and its role in target recognition 3 1.2.1 Free energy cost for local deformation of DNA. …………… 6 1.2.2 Sequence-dependent base-pair opening rate measured by NMR imino proton exchange …………… 8 1.2.3 How do site-specific proteins search for their target sites on genomic DNA? …… 9 1.2.4 How do site-specific proteins recognize their target sites? …………… 11 1.2.5 Conformational capture or protein-induced DNA bending…………… 14 1.2.6 Measurements of DNA binding and bending kinetics …………… 14 1.2.7 Competition between 1-D diffusion and binding-site recognition: the “speed-stability” paradox. ……………… 16 1.3 Experimental techniques to study dynamics of protein-DNA interactions… 17 1.3.1 Laser temperature-jump spectroscopy. ……… 18 1.4 Thesis Overview…………… 20 II METHODS………………………………………………………….. 33 2.1 Equilibrium measurements…………… 33 2.2 Laser Temperature Jump technique…………… 33 2.2.1 Laser Temperature jump spectrometer ……… 35 2.2.2 Theoretical estimation of the size of the T-jump…………… 38 2.2.3 Photo-acoustic effects and cavitation. …………… 39 2.2.4 Estimation of temperature jump using reference sample in a T-jump experiment…………… 40 2.2.5 T-jump recovery kinetics…………… 43 2.2.6 Discrete single- or double-exponential decay convoluted with T-jump recovery 46 2.2.7 Acquisition and matching of relaxation traces measured over different time-scales 46 2.2.8 Maximum entropy analysis…………… 48 2.3 Equilibrium FRET measurements…………… 50 2.4 Nucleotide analog 2-Aminopurine (2AP) …………… 59 2.5 Fraction of Protein and DNA in complex at Equilibrium…………… 61 III Integration Host Factor (IHF)-DNA interaction………………………….67 3.1 Introduction…………… 67 3.1.1 Integration host factor (IHF) …………… 67 3.1.2 IHF binds to the minor groove on DNA and recognizes its specific site via indirect readout…………… 68 3.1.3 Structure of IHF-H’ complex…………… 69 3.1.4 Background of IHF/H’ interaction dynamics …………… 73 3.1.5 Binding site recognition versus protein diffusional search…………… 78 3.2 Results…………… 80 3.2.1 DNA bending kinetics in the IHF – H’ complex are biphasic…………… 80 3.2.2 The slow phase occurs on the same time scale as spontaneous bp opening at a kink site. …………… 82 3.2.3 Introducing mismatches at the site of the kinks affects the slow phase but not the fast phase. …………… 84 3.2.4 DNA bending rates in the slow phase of IHF- TT8AT complex reflect enhanced base-pair opening rates in mismatched DNA…………… 90 3.2.5 DNA modifications away from the kink sites have no effect on either of the two rates. …………… 92 3.2.6 Two plausible scenarios for biphasic relaxation kinetics…………… 95 3.2.7 Salt-dependence of the fast and slow components. …………… 95 3.2.8 Protein mutations distal to the kink sites affect affinity and bending rate of slow phase…………… 101 3.2.9 Control experiments to rule out contributions to the relaxation kinetics from dye dynamics or dye interactions with protein or DNA……………. 108 3.3 Discussion…………… 112 3.4 Concluding Remarks…………… 117 IV LESION RECOGNITION BY XERODERMA PIGMENTOSUM C (XPC) PROTEIN………………………………………………………...124 4.1 Introduction…………… 124 4.1.1 Nucleotide excision repair (NER) …………… 124 4.1.2 Experimental design…………… 132 4.2 Method…………… 135 4.2.1 Preparation of double-stranded DNA substrates. …………… 135 4.2.2 Preparation of Rad4–Rad23 complexes. …………… 135 4.2.3 Duplex melting temperatures of mismatched and undamaged/matched DNA. ………….…………… 139 4.2.4 Apparent binding affinities (Kd,app) determined by electrophoretic mobility shift assays……………………….…………… 137 4.2.5 Equilibrium FRET temperature scan experiments with tCo/tCnitro probes. ……………. 138 4.2.6 Acquisition and analyses of T-jump relaxation traces. …………… 139 4.3 Results …………… 144 4.3.1 Kinetics of Rad4 (wild type) induced DNA opening rate…………… 144 4.3.2 tCo and tCnitro FRET pair as probes for sensing changes in DNA helical structure. …………… 159 4.3.3 DNA bending dynamics measured with extrinsically attached FRET pair/ AN7…………… 189 4.4 Discussion………………………… 196 4.4.1 Rad4/XPC induced nucleotide flipping/ Open dynamics measured with 2AP probe……………………………… 196 4.4.2 Rad4/XPC induced helical distortion dynamics measured using tco/tcniro…………… 198 4.4.3 Rad4/XPC induced DNA bending dynamics measured using TAMRA/Cy5 FRET pair…………… 204 4.5 Conclusion…………… 205 V DNA MISMATCH REPAIR……………………………………………… 213 5.1 Introduction…………… 213 5.1.1 Structural Studies on MutS bound to mismatched DNA…………… 216 5.1.2 What role does the intrinsic flexibility of DNA play in the mismatch recognition and subsequent repair? …………… 218 5.1.3 Dynamics of DNA binding and bending by MutS. …………… 219 5.2 Results…………… 220 5.2.1 Taq MutS binding to mismatch (T-bulge) DNA as probed by 2AP…………… 221 5.2.2 Taq MutS binding to mismatch (T-bulge) DNA as probed by FRET pair………… 227 5.2.3 MutS binding to mismatch (T-bulge) DNA as probed by 2AP (in DNA) and Trp (in MutS) …………… 233 5.3 Discussion…………… 238 5.4 Conclusion…………… 240

Erscheint lt. Verlag 29.11.2016
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XXI, 199 p. 112 illus., 105 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Dynamics of protein DNA interactions • Equlibrium FRET measurements • Integration Host Factor (IHF)-DNA interaction • Laser temperature-jump spectroscopy • Protein-induced DNA bending • Protein-Ligand Interactions
ISBN-10 3-319-45129-4 / 3319451294
ISBN-13 978-3-319-45129-9 / 9783319451299
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich