Biological Adhesives (eBook)

Andrew M. Smith (Herausgeber)

eBook Download: PDF
2016 | 2. Auflage
VIII, 380 Seiten
Springer-Verlag
978-3-319-46082-6 (ISBN)

Lese- und Medienproben

Biological Adhesives -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Many creatures use adhesive polymers and structures to attach to inert substrates, to each other, or to other organisms. This is the first major review that brings together research on many of the well-known biological adhesives dealing with bacteria, fungi, algae, and marine and terrestrial animals. As we learn more about their molecular and mechanical properties we begin to understand why they adhere so well and with this comes broad applications in areas such as medicine, dentistry, and biotechnology.



Andrew M. Smith

Professor

Ithaca College

Department of Biology


Specialty: Animal Physiology, Biomechanics

Phone  (607) 274-3975

E-mail: asmith@ithaca.edu

Office: 155 Ctr for Natural Sciences

Ithaca, NY 14850

Andrew M. Smith Professor Ithaca College Department of Biology Specialty: Animal Physiology, Biomechanics Phone  (607) 274-3975 E-mail: asmith@ithaca.edu Office: 155 Ctr for Natural Sciences Ithaca, NY 14850

Preface 5
Contents 7
Chapter 1: Adhesive Bacterial Exopolysaccharides 9
1.1 Introduction 9
1.2 Characterization of Bacterial Exopolysaccharide Adhesins 10
1.2.1 Polysaccharide Purification 10
1.2.2 Polymer Length 12
1.2.3 Monosaccharide Composition 13
1.2.4 Alternative Composition Analysis Methods 13
1.2.5 Linkage Analysis 14
1.2.6 Tertiary Structural Analysis 14
1.3 Polysaccharide Biosynthesis Pathways 15
1.3.1 Wzx/Wzy-Dependent Pathway 15
1.3.2 ABC Transporter-Dependent Pathway 16
1.3.3 Synthase-Dependent Pathway 17
1.4 Adhesive Exopolysaccharides 17
1.4.1 Pel Polysaccharide (PEL) 17
1.4.1.1 PEL Biosynthesis Pathway 18
1.4.1.2 Modifications 18
1.4.1.3 Interactions and Functions 19
1.4.2 Psl Polysaccharide 19
1.4.2.1 PSL Biosynthetic Pathway 20
1.4.2.2 Interactions and Functions 21
1.4.3 PNAG 21
1.4.3.1 Biosynthesis 22
1.4.3.2 Modification 23
1.4.3.3 Interactions and Functions 24
1.4.4 Holdfast 24
1.4.4.1 Biosynthesis 25
1.4.4.2 Modification 25
1.4.4.3 Interactions and Functions 26
1.5 Exopolysaccharide Adhesives in Infection 27
1.6 Conclusion 27
References 28
Chapter 2: Adhesion and Adhesives of Fungi and Oomycetes 33
2.1 Introduction 34
2.2 Prevalence and Importance of Adhesion in Fungi and Oomycetes 34
2.2.1 Adhesion as Part of Many Stages of Morphogenesis in Many Fungi 35
2.2.2 Functions of Adhesion 36
2.2.3 Selected Examples of Adhesiveness as a Part of a Developmental Sequence 38
2.2.3.1 Colletotrichum graminicola, Causal Agent of Anthracnose on Corn 38
2.2.3.2 Blumeria graminis f. sp. hordei and f. sp. tritici, Causal Agent of Powdery Mildew of Barley and Wheat, Respectively 39
2.2.3.3 Magnaporthe oryzae, Causal Agent of Rice Blast 39
2.3 Challenges in Identifying Adhesives in Fungi 40
2.3.1 Genetic ``Knockout,´´ ``Knockin,´´ and Overexpression Strategies 40
2.3.2 Biochemical Strategies 42
2.4 Fungal and Oomycete Glues 43
2.4.1 Features 43
2.4.2 Postulated Composition of Glues 43
2.4.3 Secretion and Cross-Linking, with a Focus on Transglutaminases 45
2.4.4 Cell Surface Macromolecules with Apparent Adhesive Properties 45
2.4.4.1 PcVsv1, a Protein on Encysting Zoospores of Phytophthora cinnamomi 45
2.4.4.2 90-kDa Mannoprotein on Macroconidia of Nectria haematococca (Anamorph Fusarium solani f. sp. cucurbitae) 47
2.4.4.3 Hydrophobins: The Mannoprotein SC3, a Schizophyllum commune Hydrophobin the Class I Hydrophobin BcHpb1 of Botrytis ci...
2.4.4.4 MAD1 and MAD2 (Metarhizium Adhesion-Like Proteins) in the Entomopathic Fungus Metarhizium anisopliae 50
2.4.4.5 Selected Glycosylphosphatidylinositol-Dependent (GPI) Cell Wall Proteins 51
2.5 Fungal Adhesins 53
2.6 Conclusions 54
References 54
Chapter 3: Diatom Adhesives: Molecular and Mechanical Properties 64
3.1 Diatoms and Adhesion 65
3.1.1 Diatom Morphology 65
3.1.2 Significance of Diatom Adhesion 65
3.1.3 Diatom Adhesion Strategies 67
3.1.4 General Composition of Diatom Mucilages 67
3.2 Adhesion and Gliding of Raphid Diatoms 68
3.2.1 Adhesion and Gliding Behavior 68
3.2.2 Mechanism of Raphid Diatom Adhesion and Gliding 69
3.2.3 Fine Structure of Raphid Diatom Mucilages 70
3.2.3.1 Cell Surface Mucilage 71
3.2.3.2 Raphe Mucilage 72
3.2.3.3 Secreted Trails 74
3.2.4 Nanomechanical Properties Determined by AFM and QCM-D 76
3.2.4.1 AFM 76
Cell Surface Mucilage 76
Raphe Adhesives 77
3.2.4.2 QCM-D 78
3.2.5 Molecular Composition 79
3.2.5.1 Craspedostauros australis 79
3.2.5.2 Pinnularia viridis 80
3.2.5.3 Amphora coffeaeformis 81
3.2.5.4 Phaeodactylum tricornutum 82
3.3 Sessile Adhesion 83
3.3.1 Physical Properties of Adhesive Pads with AFM 83
3.3.1.1 Toxarium undulatum 83
3.3.1.2 Eunotia sudetica 85
3.3.2 Molecular Composition and Chemical Properties of Stalks: Achnanthes longipes 85
3.3.2.1 Stalk Formation 85
3.3.2.2 Composition and Properties 86
3.4 Concluding Remarks 88
References 89
Chapter 4: Progress in the Study of Adhesion by Marine Invertebrate Larvae 94
4.1 Introduction 95
4.2 In Situ Imaging for Morphological and Compositional Studies of Larval Adhesives 96
4.3 In Situ Spectroscopic Investigations of Larval Adhesive Secretions 100
4.4 Quantifying the Interaction of Naturally Secreted Adhesives with Surfaces 103
4.5 Measuring Surface Adsorption of Purified Larval Adhesive Proteins 105
4.6 Micromechanical Measurement of Adhesion Force in Larval Adhesives 107
4.7 Conclusions 108
References 109
Chapter 5: The Adhesive Tape-Like Silk of Aquatic Caddisworms 113
5.1 Introduction 113
5.2 Multi-scale Structure of Casemaker Caddisworm Silk 115
5.3 The Peripheral Adhesive Coating 117
5.3.1 Composition of the Silk Coating 117
5.3.2 Enzyme-Catalyzed Cross-Linking in the Peripheral Coating 117
5.3.3 Interfacial Adhesion Mechanisms 118
5.4 The Tough Fibrous Silk Core 120
5.4.1 Composition of the Silk Core 120
5.4.2 H-Fibroin Structure 120
5.5 Mechanical Properties of Caddisworm Silk 124
5.5.1 Mechanically Probing Caddisworm Silk Structure 124
5.5.2 A Mechanical Model of Caddisworm Silk 126
5.6 The Silk Spinning System 129
5.6.1 Silk Gland Anatomy 129
5.6.2 Fiber Formation in the Anterior Silk Gland 131
References 132
Chapter 6: Interfacial Phenomena in Marine and Freshwater Mussel Adhesion 135
6.1 Introduction 136
6.2 Recent Advances in Understanding Freshwater Mussel Adhesion 139
6.2.1 Structure and Composition of the Adhesive Interface 139
6.2.2 Characterization of Zebra and Quagga Mussel Byssal Proteins 143
6.3 Redox Chemistry at the Adhesive Interface 145
6.3.1 Control of pH During Protein Secretion 146
6.3.2 Antioxidant Proteins at the Plaque-Substratum Interface 148
6.3.3 Dopaquinone Tautomers 148
6.4 The Effect of Surface Chemistry and Mode of Dopa Interaction 150
6.5 The Role of Amino Acids Other than Dopa in Adhesion 152
6.6 Concluding Remarks 153
References 154
Chapter 7: Barnacle Underwater Attachment 158
7.1 Introduction 158
7.2 Barnacle Attachment 159
7.2.1 A Unique Sessile Crustacean 159
7.2.2 Attachment in the Life Cycle and Biosynthesis/Secretion of the Cement 160
7.3 Barnacle Underwater Cement 163
7.3.1 Adhesive Layer of the Cement 163
7.3.2 Authentic Sample of the Cement 164
7.3.3 Cement Nature 165
7.3.4 Multifunctionality in Underwater Attachment 166
7.3.5 Cement Proteins and Possible Functions 167
7.3.5.1 CP-100k and CP-52k 167
7.3.5.2 CP-68k 168
7.3.5.3 CP-20k 169
7.3.5.4 CP-19k 171
7.3.5.5 CP-16k 171
7.3.6 Possible Molecular Model for Barnacle Underwater Attachment 172
7.4 Comparison with Other Holdfasts and Proteins 173
7.5 Impacts to Material Science 176
7.6 Concluding Remarks 177
References 178
Chapter 8: The Biochemistry and Mechanics of Gastropod Adhesive Gels 182
8.1 Introduction 182
8.2 Adhesive Gels Used by Different Animals 183
8.3 Principles of Gel Mechanics 186
8.4 Adhesive Gel Structure 189
8.5 Cross-Linking and the Mechanics of Adhesive Gels: Stiffness and Double Networks 191
8.6 Protein Functions in the Glue 193
8.7 Comparison of Gel Structure Among Gastropods 194
8.8 Conclusion 195
References 196
Chapter 9: Adhesive Secretions in Echinoderms: A Review 198
9.1 Introduction 199
9.2 Tube Feet 199
9.2.1 Morphology and Adhesion Strength 199
9.2.2 Histology and Ultrastructure 201
9.2.3 Fine Structure and Composition of the Adhesive Material 205
9.2.3.1 Protein Fraction 207
Adhesive Proteins 208
De-adhesive Proteins 211
9.2.3.2 Carbohydrate Fraction 212
9.3 Cuvierian Tubules 212
9.3.1 Fine Structure and Adhesion Strength 213
9.3.2 Ultrastructure and Composition of the Adhesive Material 214
9.4 Comparisons Between Echinoderm Adhesives and with Other Marine Bioadhesives 219
References 224
Chapter 10: An Adhesive Secreted by Australian Frogs of the Genus Notaden 228
10.1 Introduction 229
10.2 Preliminary Field and Laboratory Data 230
10.3 Adhesive Collection 231
10.4 Solubilisation and Solidification 232
10.5 Mechanical Properties 233
10.6 Biocompatibility 234
10.7 Biochemical Studies 236
10.7.1 Colour 237
10.7.2 CD Spectra 237
10.7.3 Amino Acid Analysis 238
10.7.4 Protein Fractionation 239
10.8 Comparative Studies 240
10.9 Applications 242
10.10 Conclusions 245
References 246
Chapter 11: Properties, Principles, and Parameters of the Gecko Adhesive System 249
11.1 Introduction 249
11.2 Adhesive Properties of Gecko Setae 251
11.2.1 Properties (1) and (2): Anisotropic Attachment and High Adhesion Coefficient (mu) 252
11.2.1.1 Large Safety Factor for Adhesion and Friction? 252
11.2.2 Property (3): Low Detachment Force 254
11.2.3 Integration of Body and Leg Dynamics with Setal Attachment and Detachment 255
11.2.4 Molecular Mechanism of Gecko Adhesion 256
11.2.4.1 Unsupported Mechanisms: Glue, Suction, Electrostatics, Microinterlocking, and Friction 256
11.2.4.2 Potential Intermolecular Mechanisms: Van der Waals and Capillary Forces 257
11.2.4.3 Contact Angle Estimates of Surface Energy 258
11.2.5 Property (4): Material-Independent Adhesion 258
11.2.5.1 Testing the van der Waals and Capillary Adhesion Hypotheses 258
11.2.5.2 The Role of Water in Gecko Adhesion 259
11.2.5.3 Dominance of Geometry in VdW Interactions 260
11.2.5.4 JKR Model of Spatulae 261
11.2.5.5 Kendall Peel Model of Spatulae 262
11.2.6 Property (5): Rate-Dependent Adhesion 263
11.3 Antiadhesive Properties of Gecko Setae 263
11.3.1 Properties (6) and (7): Self-Cleaning and Anti-Self-Adhesion 264
11.3.2 Property (8): Nonsticky Default State 266
11.4 Modeling Adhesive Nanostructures 267
11.4.1 Effective Modulus of a Setal Array 267
11.4.2 Rough Surface and Antimatting Conditions 269
11.5 Scaling 270
11.5.1 Scaling of Pad Area and Spatular Size 270
11.5.2 Scaling of Stress 271
11.6 Comparison of Conventional and Gecko Adhesives 271
11.7 Gecko-Inspired Synthetic Adhesive Nanostructures 274
11.8 Future Directions in the Study of the Gecko Adhesive System 275
References 277
Chapter 12: Adhesive Secretions in Harvestmen (Arachnida: Opiliones) 285
12.1 Introduction 285
12.2 Types of Adhesive Secretions and Their Distribution Among Harvestmen 286
12.3 Glandular Setae in Palpatores 288
12.4 Pedipalpal Adhesives in Laniatores Nymphs 295
12.5 Soil Camouflage 297
12.6 Egg Coatings and Spermatophores 299
12.7 Conclusion 301
References 302
Chapter 13: Unraveling the Design Principles of Black Widow´s Gumfoot Glue 306
13.1 Introduction 306
13.2 Gumfoot Glue 309
13.2.1 Secretion Mechanism 309
13.2.2 Material Properties 309
13.2.2.1 Viscoelasticity 309
13.2.2.2 Chemical Composition 310
Hygroscopic Salts 310
Water-Soluble Peptides 311
Glycoproteins 312
Lipids 312
13.2.3 Humidity-Mediated Adhesion 313
13.2.4 Molecular Mechanism of Adhesion 315
13.2.4.1 Detecting Gumfoot Glue Peaks 315
13.2.4.2 Effect of Salts on the Humidification of Glue Proteins 316
13.2.4.3 Effect of Humidity on Salt Mobility 317
13.2.4.4 Implications of Molecular-Level Findings Toward Macro-Level Adhesion 318
13.2.5 Summary 319
References 319
Chapter 14: High-Strength Adhesive Exuded from the Adventitious Roots of English Ivy 323
14.1 Introduction 323
14.2 Uniqueness and Importance of the Bioadhesive Derived from English Ivy 325
14.2.1 Hierarchical Attachment Strategies of English Ivy 326
14.2.2 Spherical Nanoparticles Observed in the Ivy-Derived Adhesive 326
14.2.3 Monitoring the Secretion of the Nanocomposite-Rich Adhesive in Real Time 328
14.3 Identification of the Chemical Constituents of the Spheroidal Nanoparticles 329
14.3.1 Massive Harvest of the Purified Ivy Nanoparticles 329
14.3.2 Physicochemical Characterization 330
14.3.3 Glycoprotein Nature of the Ivy Nanoparticles 331
14.4 Molecular Basis for the Ivy-Derived Adhesive 335
14.4.1 Preferable Surface Wetting Favored by the Ivy Nanoparticles 335
14.4.2 Chemical Components Within the Ivy-Derived Adhesive 336
14.4.3 Calcium-Driven Cross-Linking 338
14.4.4 Putative Model of the Ivy-Derived Bioadhesive 339
14.5 Adhesion Strength 340
14.5.1 Adhesion Force of the Ivy-derived Adhesive Characterized by AFM 340
14.5.2 Adhesion Strength of the Ivy-Mimetic Adhesive Composites 340
14.6 Conclusions and Future Prospects 341
References 342
Chapter 15: Biomimetic Adhesives and Coatings Based on Mussel Adhesive Proteins 347
15.1 Introduction 347
15.2 Mussel Adhesive Proteins and DOPA 348
15.3 Catechol Chemistry 349
15.3.1 Reversible Interactions 350
15.3.2 Oxidization-Induced Covalent Interactions 351
15.3.3 ROS Generation During Catechol Oxidization 352
15.3.4 Chemical Modification to Catechol 352
15.4 Mussel-Inspired Adhesive Polymers 353
15.4.1 Extraction and Expression of MAPs 353
15.4.2 Synthetic Mussel-Inspired Polymer Adhesive 355
15.5 Mussel-Inspired Material Surface Functionalization 358
15.5.1 Antifouling Coating Mediated by Catechol-Interface Interactions 358
15.5.2 Polydopamine Coating 361
15.6 Advanced Material Design Based on Catechol Chemistry 363
15.6.1 Gecko- and Mussel-Inspired Hybrid Adhesive 363
15.6.2 Nanocomposite Adhesive Hydrogel 364
15.6.3 Drug Delivery 365
15.6.4 Hydrogel Actuator 366
15.6.5 Self-Healing Hydrogel 367
15.7 Summary and Future Outlook 369
References 369

Erscheint lt. Verlag 22.10.2016
Zusatzinfo VIII, 378 p. 95 illus., 49 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Biologie Zoologie
Technik Maschinenbau
Schlagworte Adhesion • Adhesive bacterial exopolysaccharides • Barnacle underwater attachment • bioadhesive • Bioengineering • biomaterials • biopolymers • Black widow’s gumfoot glue • Diatom adhesives • Fungal adhesives • Gastropod adhesive gels • Gecko adhesive system • glue • Mussel adhesion
ISBN-10 3-319-46082-X / 331946082X
ISBN-13 978-3-319-46082-6 / 9783319460826
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Rüdiger Wehner; Walter Jakob Gehring

eBook Download (2013)
Georg Thieme Verlag KG
79,99
Biologie, Lebensraumdynamik und Gefährdung. Artenporträts von über …

von Heinz Wiesbauer

eBook Download (2023)
Verlag Eugen Ulmer
44,99
Wie Myrmecophile mit ihren Wirten interagieren

von Bert Hölldobler; Christina Kwapich

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
54,99