Pole Solutions for Flame Front Propagation
Seiten
2016
|
Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-36881-8 (ISBN)
Springer International Publishing (Verlag)
978-3-319-36881-8 (ISBN)
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
Introduction.- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry.- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane.- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries.- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution.- Summary.
Erscheinungsdatum | 21.10.2016 |
---|---|
Reihe/Serie | Mathematical and Analytical Techniques with Applications to Engineering |
Zusatzinfo | XII, 118 p. 37 illus., 10 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Plasmaphysik | |
Technik ► Maschinenbau | |
Schlagworte | Appl.Mathematics/Computational Methods of Engineer • Engineering • engineering fluid dynamics • Engineering: general • Filtration Combustion • Flame Front Propagation • Laplacian Growth • Maths for engineers • Mechanics of Fluids • Plasma physics • Pole Solution • Radially Propagating Fronts • Scaling Laws in Channel Geometries • Stability Analysis |
ISBN-10 | 3-319-36881-8 / 3319368818 |
ISBN-13 | 978-3-319-36881-8 / 9783319368818 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99 €
Buch | Softcover (2024)
Springer Vieweg (Verlag)
44,99 €
für Ingenieure und Naturwissenschaftler
Buch | Softcover (2024)
Springer Vieweg (Verlag)
34,99 €