Nonparametric Bayesian Inference in Biostatistics -

Nonparametric Bayesian Inference in Biostatistics

Riten Mitra, Peter Müller (Herausgeber)

Buch | Softcover
XVII, 448 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-36817-7 (ISBN)
96,29 inkl. MwSt
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

Riten Mitra is Assistant Professor in the Department of Bioinformaticsand Biostatistics at University of Louisville. His research interestsinclude Bayesian graphical models and nonparametric Bayesian methods with a special emphasis on applications in genomics andbioinformatics.  Peter Mueller is Professor in the Department of Mathematics and theDepartment of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.

Part I Introduction.- Bayesian Nonparametric Models.- Bayesian Nonparametric Biostatistics.- Part II Genomics and Proteomics.- Bayesian Shape Clustering.- Estimating Latent Cell Subpopulations with Bayesian Feature Allocation Models.- Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations.- Modeling the Association Between Clusters of SNPs and Disease Responses.- Bayesian Inference on Population Structure: from Parametric to Nonparametric Modeling.- Bayesian Approaches for Large Biological Networks.- Nonparametric Variable Selection, Clustering and Prediction for Large Biological Datasets.- Part III Survival Analysis.- Markov Processes in Survival Analysis.- Bayesian Spatial Survival Models.- Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data.- Part IV Random Functions and Response Surfaces.- Neuronal Spike Train Analysis Using Gaussian Process Models.- Bayesian Analysis of Curves Shape Variation through Registration and Regression.- Biomarker-Driven Adaptive Design.- Bayesian Nonparametric Approaches for ROC Curve Inference.- Part V Spatial Data.- Spatial Bayesian Nonparametric Methods.- Spatial Species Sampling and Product Partition Models.- Spatial Boundary Detection for Areal Counts.- A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs.- Bayesian Nonparametrics for Missing Data in Longitudinal Clinical Trials.

Erscheinungsdatum
Reihe/Serie Frontiers in Probability and the Statistical Sciences
Zusatzinfo XVII, 448 p. 96 illus., 47 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Naturwissenschaften Biologie
Schlagworte Biostatistical inference • Biostatistics • Clinical Sciences • Epidemiology and medical statistics • Genomics / proteomics • Life sciences: general issues • mathematics and statistics • Nonparametric Bayesian (BNP) approaches • probability and statistics • Statistical Theory and Methods • Statistics for Life Sciences, Medicine, Health Sci • Survival Analysis • Survival regression
ISBN-10 3-319-36817-6 / 3319368176
ISBN-13 978-3-319-36817-7 / 9783319368177
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein überfälliges Gespräch zu einer Pandemie, die nicht die letzte …

von Christian Drosten; Georg Mascolo

Buch | Hardcover (2024)
Ullstein Buchverlage
24,99

von Matthias Egger; Oliver Razum; Anita Rieder

Buch | Softcover (2021)
De Gruyter (Verlag)
59,95