Mathematical Methods in Physics
Springer International Publishing (Verlag)
978-3-319-37430-7 (ISBN)
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.
The text is divided into three parts:
- Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces.
- Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schrödinger operators, as needed in quantum physics and quantum information theory - are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations.
- Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle.
The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire's fundamental results and their main consequences, and bilinear functionals.
Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.
Philippe Blanchard is Professor of Mathematical Physics at Bielefeld University in Germany. Erwin Bruening is a Research Fellow at the University of KwaZulu-Natal in South Africa.
Introduction.- Spaces of Test Functions.- Schwartz Distributions.- Calculus for Distributions.- Distributions as Derivatives of Functions.- Tensor Products.- Convolution Products.- Applications of Convolution.- Holomorphic Functions.- Fourier Transformations.- Distributions as Boundary Values of Analytic Functions.- Other Spaces of Generalized Functions.- Sobolev Spaces.- Hilbert Spaces: A Brief Historical Introduction.- Inner Product Spaces and Hilbert Spaces.- Geometry of Hilbert Spaces.- Separable Hilbert Spaces.- Direct Sums and Tensor Products.- Topological Aspects.- Linear Operators.- Quadratic Forms.- Bounded Linear Operators.- Special Classes of Linear Operators.- Elements of Spectral Theory.- Compact Operators.- Hilbert-Schmidt and Trace Class Operators.- The Spectral Theorem.- Some Applications of the Spectral Representation.- Spectral Analysis in Rigged Hilbert Spaces.- Operator Algebras and Positive Mappings.- Positive Mappings in Quantum Physics.- Introduction.- DirectMethods in the Calculus of Variations.- Differential Calculus on Banach Spaces and Extrema of Functions.- Constrained Minimization Problems (Method of Lagrange Multipliers).- Boundary and Eigenvalue Problems.- Density Functional Theory of Atoms and Molecules.- Appendices.- Index.
"This book gives a detailed survey on mathematical methods in physics ... . The book is very suitable for students of physics, mathematics or engineering with a good background in analysis and linear algebra. ... All in all, the book has a high didactical and scientific quality so that it can be recommended for both graduate students and researchers." (Michael Demuth, zbMATH 1330.46001, 2016)
Erscheinungsdatum | 14.10.2016 |
---|---|
Reihe/Serie | Progress in Mathematical Physics |
Zusatzinfo | XXVII, 598 p. 4 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 954 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Distribution Theory • Functional Analysis • Functional analysis and transforms • Hilbert space operators • Linear Operators • Mathematical methods in physics • Mathematical Physics • Mathematics • mathematics and statistics • operator theory • Optimization • Tensor Products • variational methods |
ISBN-10 | 3-319-37430-3 / 3319374303 |
ISBN-13 | 978-3-319-37430-7 / 9783319374307 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich