Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration

Buch | Hardcover
XIII, 150 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-48642-0 (ISBN)

Lese- und Medienproben

Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration - Matthew. J Cliffe
106,99 inkl. MwSt
This book elaborates on the acceleration of charged particles with ultrafast terahertz electromagnetic radiation. It paves the way for new, and improves many aspects of current, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser.
The author has developed new sources of terahertz radiation with attractive properties for accelerator-based applications. These include a radially biased large-area photoconductive antenna (PCA) that provided the largest longitudinally polarised terahertz electric field component ever measured from a PCA. This radially biased PCA was used in conjunction with an energy recovery linear accelerator for electron acceleration experiments at the Daresbury Laboratory. To achieve even higher longitudinally polarised terahertz electric field strengths, and to be able to temporally tune the terahertz radiation, the author investigated generation within non-linear optical crystals. He developed a novel generation scheme employing a matched pair of polarity inverted magnesium-oxide doped stoichiometric lithium niobate crystals, which made it possible to generate longitudinally polarised single-cycle terahertz radiation with an electric field amplitude an order of magnitude larger than existing sources.

Matthew J. Cliffe obtained a physics degree from the University of Hertfordshire in 2010. Subsequently he moved to The University of Manchester to study for an M.Sc. in Photon Science. After its successful completion Matthew remained at Manchester to undertake a Ph.D. in terahertz physics, supervied by Dr. D. M. Graham, Prof. W. R. Flavell and Dr. S. P. Jamison. During his Ph.D. he developed terahertz radiation sources and diagnostic techniques for accelerator applications at Daresbury Laboratory. In 2015 Matthew started working as a postdoctoral research associate at The Cockcroft Institute in the field of ultrafast terahertz generation for particle acceleration.

Introduction.- Literature Review.- Background Theory.- Experimental Apparatus.- Radiation Propagation Simulation.- ALICE Energy Modulation Induced by Terahertz Reaction (AEMITR).- Generation of Longitudinally Polarised Terahertz Radiation with a Photoconductive Antenna.- Generation of Longitudinally Polarised Terahertz Radiation in Non-Linear Optical Crystals.- Conclusions and Future Work.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo XIII, 150 p. 86 illus., 67 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
Schlagworte Applied and Technical Physics • applied physics • Energy Recovery Linear Accelerator • Lithium niobate • Longitudinally Polarized Electromagnetic Waves • Particle Acceleration and Detection, Beam Physics • Particle and high-energy physics • Photoconductive Antenna • Physics • Physics and Astronomy • Radially Polarized Beam • Terahertz Acceleration • Terahertz Generation
ISBN-10 3-319-48642-X / 331948642X
ISBN-13 978-3-319-48642-0 / 9783319486420
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich