The Kadison-Singer Property - Marco Stevens

The Kadison-Singer Property

(Autor)

Buch | Softcover
X, 140 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-47701-5 (ISBN)
53,49 inkl. MwSt
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material.

This elementary account of the Kadison-Singer conjecture is very well-suited for graduate students interested in operator algebras and states, researchers who are non-specialists of the field, and/or interested in fundamental quantum physics.

Introduction.-Pure state extensions in linear algebra.- Density operators and pure states.- Extensions of pure states.- State spaces and the Kadison-Singer property.- States on C*-algebras.- Pure states and characters.- Extensions of pure states.- Properties of extensions and restrictions.- Maximal abelian C*-subalgebras.- Maximal abelian C*-subalgebras.- Examples of maximal abelian C*-subalgebras.- Minimal projections in maximal abelian von Neumann algebras.- Unitary equivalence.- Minimal projections.- Subalgebras without minimal projections.- Subalgebras with minimal projections.- Classification.- Stone-Cech compactification.- Stone-Cech compactification.- Ultrafilters.- Zero-sets.- Ultra-topology.-Convergence of ultrafilters for Tychonoff spaces.- Pushforward.- Convergence of ultrafilters for compact Hausdorff spaces.- Universal property.- The continuous subalgebra and the Kadison-Singer conjecture.- Total sets of states.- Haar states.- Projections in the continuous subalgebra.- TheAnderson operator.- The Kadison-Singer conjecture.- The Kadison-Singer problem.- Real stable polynomials.- Realizations of random matrices.- Orthants and absence of zeroes.- Weaver's theorem.- Paving theorems.- Proof of the Kadison-Singer conjecture.- Preliminaries.- Linear algebra.- Order theory.- Topology.- Complex analysis.- Functional Analysis and Operator Algebras.- Basic functional analysis.- Hilbert spaces.- C*-algebras.- Von Neumann algebras.- Additional material.- Transitivity theorem.- G-sets, M-sets and L-sets.- GNS-representation.- Miscellaneous.- Notes and remarks.- References.

Erscheinungsdatum
Reihe/Serie SpringerBriefs in Mathematical Physics
Zusatzinfo X, 140 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Anderson operator • C -algebras • C*-algebras • convergence of ultrafilters • Functional Analysis • Functional analysis and transforms • GNS-representation • Haar states • Hausdorff Spaces • Mathematical methods in physics • Mathematical Physics • Mathematics • mathematics and statistics • maximal abelian subalgebras • operator theory • Paving theorems • Stone-Cech Compactification • Stone-Čech compactification • Transitivity theorem • Tychonoff spaces • ultrafilters • von neumann algebras • Weaver's theorem • Weaver’s theorem
ISBN-10 3-319-47701-3 / 3319477013
ISBN-13 978-3-319-47701-5 / 9783319477015
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99