Form Versus Function: Theory and Models for Neuronal Substrates (eBook)

eBook Download: PDF
2016 | 1st ed. 2016
XXVI, 374 Seiten
Springer International Publishing (Verlag)
978-3-319-39552-4 (ISBN)

Lese- und Medienproben

Form Versus Function: Theory and Models for Neuronal Substrates - Mihai Alexandru Petrovici
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models.
 
The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail.
 
The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author's recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks.
 
The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing.
 



Mihai Petrovici started studying Physics at the University of Heidelberg in 2001. During his early undergraduate days, he worked on particle tracking for the ALICE experiment at CERN. For his diploma thesis, he moved to solid state physics, where he studied glasses at low temperatures. He began his PhD in 2008 in the Electronic Vision(s) group of Karlheinz Meier and Johannes Schemmel, where he worked at the interface of theoretical neuroscience and neuromorphic computing, earning his doctorate with summa cum laude in 2015. During this time, he established a theoretical department within the Vision(s) group, which he is currently leading.

Mihai Petrovici started studying Physics at the University of Heidelberg in 2001. During his early undergraduate days, he worked on particle tracking for the ALICE experiment at CERN. For his diploma thesis, he moved to solid state physics, where he studied glasses at low temperatures. He began his PhD in 2008 in the Electronic Vision(s) group of Karlheinz Meier and Johannes Schemmel, where he worked at the interface of theoretical neuroscience and neuromorphic computing, earning his doctorate with summa cum laude in 2015. During this time, he established a theoretical department within the Vision(s) group, which he is currently leading.

Prologue.- Introduction: From Biological Experiments to Mathematical Models.- Artificial Brains: Simulation and Emulation of Neural Networks.- Dynamics and Statistics of Poisson-Driven LIF Neurons.- Cortical Models on Neuromorphic Hardware.- Probabilistic Inference in Neural Networks.- Epilogue.

Erscheint lt. Verlag 19.7.2016
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XXVI, 374 p. 150 illus., 101 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik
Medizin / Pharmazie
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte Abstract Spiking Neuron Models • Bayesian inference • Computational Neuroscience • Deep Learning Architectures • Neural Network Theory • Neural Sampling • Neuromorphic Hardware • neuronal dynamics • Spike and Rate Codes • Theoretical Neuroscience
ISBN-10 3-319-39552-1 / 3319395521
ISBN-13 978-3-319-39552-4 / 9783319395524
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 24,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
für Studierende der Natur- und Ingenieurwissenschaften

von Heribert Stroppe; Peter Streitenberger; Eckard Specht

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
39,99