Electrochemistry of N4 Macrocyclic Metal Complexes (eBook)

Volume 2: Biomimesis, Electroanalysis and Electrosynthesis of MN4 Metal Complexes

Jose H. Zagal, Fethi Bedioui (Herausgeber)

eBook Download: PDF
2016 | 2nd ed. 2016
XV, 436 Seiten
Springer International Publishing (Verlag)
978-3-319-31332-0 (ISBN)

Lese- und Medienproben

Electrochemistry of N4 Macrocyclic Metal Complexes -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This new edition describes the state of the art regarding metal complexes of N4-ligands, such as porphyrins and phthalocyanines. Volume 2 focuses on the electro assisted use of N4 complexes as biomimetic models for studying several biological redox processes.  It focuses on molecular oxygen transport and catalytic activation to mimic monooxygenase enzymes of the cytochrome P450 in particular.  It also examines N4 complexes' use as catalysts for the oxidative degradation of various types of pollutants (organo-halides, for example) and residual wastes. The remarkable activity of these complexes towards a large number of significantly relevant biological compounds makes them excellent candidates as electrode modifiers for electrochemical sensing. This volume also discusses applications of N4 Macrocyclic Metal Complexes to photoelectrochemistry and photocatalysis, and concludes with an exciting section on Electrosynthesis of N4.

Foreword 5
Preface 6
Contents 9
Editors and Contributors 11
1 Supramolecular Hybrid Organic/Inorganic Nanomaterials Based on Metalloporphyrins and Phthalocyanines 14
1 Introduction 14
2 Supramolecular Porphyrin Systems 16
2.1 Electrostatic Self-assembly 17
2.2 Coordinative Assembly 18
2.3 Assembly by Axial Coordination 34
2.4 Porphyrin Arrays and Polymers 39
3 Porphyrin-Based Dendrimers and Hybrid Nanomaterials 41
4 Porphyrin-Based Dendrimers 41
4.1 Porphyrin Dendrimers 43
4.2 Electrochemically Active Dendrimers 47
4.2.1 Electroactive Porphyrin-Dendrimers 48
Cored Porphyrin-Dendrimers 48
Photoinduced Electron Transfer in Porphyrin–Dendrimer Systems 53
5 Meso-Pyridinium Porphyrin Derivatives 56
6 Porphyrin Polyoxometalate Derivatives 59
7 Porphyrin Hybrids with Metal Nanoparticles 62
8 Porphyrin Hybrids with Carbon Nanomaterials 67
9 Electrocatalytic and Amperometric Sensor Applications 71
10 Final Remarks 81
References 81
2 Electrochemically Activated Catalytic Pathways of Human Metabolic Cytochrome P450s in Ultrathin Films 96
1 Introduction 96
2 Cyt P450 Catalytic Cycle 97
2.1 Electrochemical Investigation of cyt P450 Enzymes 98
2.2 Development of PFE to Investigate Purified cyt P450 Films on Electrodes 99
2.3 Characterization of Ultrathin LbL Films of Human cyt P450 Enzymes with Negatively Charged Poly(styrene sulfonate) Polyions 100
2.4 Electrocatalytic Pathways in Purified cyt P450 Films on Electrodes 101
2.4.1 Direct Electron Transfer 101
2.4.2 Electrochemical Monitoring of Ligand Binding to Human cyt P450s 103
2.5 Cyt P450 Heme Iron Spin State: Spectral and Electrochemical Properties 107
2.6 Electrode-Driven Substrate to Product Conversion by Human cyt P450 Films 108
2.7 Microsomal Electrochemistry and Electrocatalysis 109
3 Summary 114
Acknowledgments 115
References 115
3 Applications of MN4 Macrocyclic Metal Complexes in Electroanalysis 119
1 Introduction 119
2 Immobilization of MN4-MC on the Surface of Electrodes 121
3 Carbon-Based Materials 122
3.1 Graphite 122
3.2 Carbon Nanotubes 125
3.3 Graphene-Based Materials 131
4 Silica-Based Materials 136
5 Conclusions 141
Acknowledgments 141
References 141
4 Spectroelectrochemistry of Phthalocyanines 146
1 Introduction 146
2 Electrochemistry and Spectroelectrochemistry of Metal-Free Phthalocyanines (H2Pcs) 147
3 Electrochemistry and Spectroelectrochemistry of Metallophthalocyanines (MPcs-RIAM) Bearing Redox Inactive Metal Centers 153
4 Electrochemistry and Spectroelectrochemistry of Metallophthalocyanines (MPcs-RAM) Bearing Redox Active Metal Centers 161
4.1 Electrochemistry and Spectroelectrochemistry of CoPcs 162
4.2 Electrochemistry and Spectroelectrochemistry of X-Mn(III)Pcs 173
4.3 Electrochemistry and Spectroelectrochemistry of FePcs 186
4.4 Electrochemistry and Spectroelectrochemistry of TiOPcs 191
4.5 Electrochemistry and Spectroelectrochemistry of Sandwich Metallophthalocyanines (MPc2) 198
5 Summary 205
References 206
5 Electroanalysis of Hydrazine and Related Compounds by Oxidation Promoted with MN4 Macrocyclics 212
1 Introduction 212
2 Reaction Pathways for the Electrooxidation of Hydrazine on MN4 Macrocyclic Compounds 215
3 Electroanalysis of Hydrazine and Related Compounds by Oxidation Promoted by MN4 Macrocyclics 217
3.1 Immobilization of MN4 Macrocyclic Compounds on Electrode Surfaces 217
4 Conclusions 226
References 227
6 Modification of Electrode Surfaces with Metallo Phthalocyanine Nanomaterial Hybrids 235
1 Introduction 236
2 Methods of Electrode Modification 237
2.1 Self-assembled Monolayers (SAMs) 237
2.2 Grafting of Diazonium Salts 237
2.3 Click Chemistry 239
2.4 Adsorption (Drop Dry or Dip Dry) 241
3 Methods of Characterization of Modified Electrodes Using Pcs/Nanomaterials 241
3.1 Cyclic Voltammetry (CV) 241
3.2 Electrochemical Impedance Spectroscopy (EIS) 242
3.3 Atomic Force Microscopy (AFM) 243
3.4 Scanning Electron Microscopy (SEM) 244
3.5 Scanning Electrochemical Microscopy (SECM) 244
3.6 X-Ray Photoelectron Spectroscopy (XPS) 246
4 Electrode Modification Using Binuclear Pcs 247
4.1 Modification of Glassy Carbon Electrode with Binuclear Cobalt Phthalocyanine/Surfactant/Ordered Mesoporous Carbon 248
4.1.1 Surface Modification 248
4.1.2 Surface Characterization 249
4.2 Modification of Glassy Carbon Electrode with Poly(Pyrrole)-Graphene Oxide-Binuclearphthalocyanine Cobalt(II) Sulphonate (PPY-GO-BiCoPc) 252
4.2.1 Surface Modification 252
4.2.2 Surface Characterization 252
4.3 Carbon Supported Binuclear-Metal Phthalocyanine Catalyst in Combination with Metal Oxides 254
4.3.1 Surface Modification 254
4.3.2 Surface Characterization 255
5 Electrode Modification Using Pcs and Carbon Nanotubes 259
5.1 Mononuclear Phthalocyanines 259
5.2 Binuclear Phthalocyanines 265
6 Electrode Modifications Using QDs and Their Conjugates with Pcs 269
7 Electrode Modification Using Metal Nanoparticles and Pcs 271
7.1 Electrocatalytic Behavior of Au Nanoparticles 271
7.2 Electrocatalytic Behavior of Ni Nanoparticles 271
7.3 Electrocatalytic Behavior of Pd Nanoparticles 274
8 Conclusion 276
Acknowledgements 276
References 277
7 Modified Electrodes with MN4 Complexes: Conception and Electroanalytical Performances for the Detection of Thiols 286
1 Introduction 286
2 Physical and Chemical Methods for MN4 Complexes Immobilization on Different Materials 287
2.1 Physical Adsorption of MN4 Complexes on Graphite 287
2.2 Physical Adsorption of MN4 Complexes on Glassy Carbon 289
2.3 Immobilization of MN4 Complexes on Electrodes by Diazonium Strategy 290
2.4 Chemical Incorporation of MN4 Complexes on Electrode Surfaces by Electropolymerization 290
2.5 Physical and Chemical Incorporation of MN4 Complexes on Carbon Nanotubes 291
2.5.1 Methods of Preparation of MN4/CNT Materials 291
2.5.2 Electrochemical Characterization of CNT/MN4 Electrodes 295
2.6 Physical and Chemical Incorporation of MN4 Complexes on Graphene 298
2.7 Hybrid Electrodes Consisting of Self-assembled Monolayers (SAMs) on Gold Containing Macrocyclics 301
3 Electroanalysis Using MPs and MPcs-Modified Electrodes 305
3.1 Modified Electrodes Using Adsorbed Macrocycles: Physical Adsorption and Self-assembly 309
3.2 Modified Electrodes by Electropolymerized Macrocycles 311
3.3 Modified Electrodes Using Hybrids Combining MN4 Complexes and Nanomaterials 312
3.3.1 Hydrids with Carbon Nanotubes (CNTs) 313
3.3.2 Hydrids with Graphene 315
3.3.3 Hydrids with Other Nanomaterials 317
3.4 Electrochemical Detection Coupled to Separation Techniques and/or Microsystems 317
4 Conclusions 319
Acknowledgements 319
References 319
8 Electrochemical Oxidation and Electroanalysis of Organic Pollutants on Electrodes Modified with Metallophthalocyanines (MPcs) 331
1 Introduction 331
2 Electrochemical Remediation of Organic Pollutants by Means of Electrodes Modified with Metallophthalocyanines 331
3 Electrochemical Remediation with Electrodes Modified with Ni(II)-Based N4 Complexes 333
3.1 Characterization of Electrodes Modified with Ni(II)-Based N4 Complexes 333
3.2 Electrooxidation of Chlorinated Phenols on Electrodes Modified with Ni(II)-N4 Complexes 337
3.3 Electrooxidation of Nitrophenols on Electrodes Modified with Ni(II)-Based N4 Complexes 340
3.4 Electrooxidation of Benzyl Alcohol on Electrodes Modified with Ni(II)-Based N4 Complexes 340
4 Electrochemical Remediation with Electrodes Modified with Co(II)-Based N4 Complexes 341
4.1 Characterization of Electrodes Modified with Co(II)-Based N4 Complexes 341
4.2 Dechlorination of Organochlorine Compounds by Electroreduction on Electrodes Modified with Co-porphyrins 341
5 Chemical and Photochemical Oxidation of Organic Pollutants Using Metallophthalocyanines as Catalysts 342
6 Dechlorination of Organochlorine Compounds by Chemical Reduction with Metalloporphyrins as Catalysts 344
7 Electro-Fenton Methods Using Electrodes Modified with MN4 Compounds 344
8 Electrosensors for the Detection of Organic Compounds 345
8.1 Detection of Chlorophenoxycarboxylic Acids by Their Co-mediated Electroreduction 345
8.2 Detection of Chlorinated Phenols with Glassy Carbon and Gold Electrodes Modified with Metal Phthalocyanines 346
8.3 Detection of Nitrogen Mustard-1 347
8.4 Detection of Caffeic Acid and Phenolic Compounds Using Electrodes Modified with Phthalocyanine Complexes of Non-transition Metals 347
8.5 Detection of Phenols and Sugars with Carbon-Paste Electrodes 347
8.6 Detection of Herbicides 348
8.7 Detection of Volatile Organic Compounds with Non-electrochemical Sensors 348
References 348
9 Spirobifluorenyl-Porphyrins and their Derived Polymers for Homogeneous or Heterogeneous Catalysis 352
1 Introduction 352
2 Design and Synthesis of Spirobifluorenyl-Porphyrins 354
2.1 Design and Synthesis of Non Chiral Tetra-, Di- and Mono-Spirobifluorenyl-Porphyrins (Free Base) 354
2.2 Design and Synthesis of Chiral Spirobifluorenyl-Porphyrins 358
3 Stereochemical, Optical and Electrochemical Properties of Spirobifluorenyl Porphyrins 363
3.1 Stereochemical Properties of Spirobifluorenyl Porphyrins: An Unusual Case of Atropisomerism 363
3.2 Optical Properties of Spirobifluorenyl-Porphyrin Derivatives 368
3.3 Electrochemical Properties of Spirobifluorenyl-Porphyrin Derivatives 370
4 Anodic Polymerization of Spirobifluorenyl-Porphyrins: Synthesis and Characterization of Electrogenerated Polymers 373
4.1 Anodic Oxidation of Mono-, Di- and Tetra-Spirobifluorenyl-Porphyrins at High Potential Values: Toward Electroactive Polymers 373
4.2 Some Insights in the Polymerization Processes 375
4.3 Characterization of the Poly(Spirobifluorenyl-Porphyrins) 378
5 Spirobifluorenyl-Porphyrins as Catalysts for Homogeneous and Heterogeneous Reactions 383
5.1 Catalytic Oxidation of Alkenes 383
5.2 Cyclopropanation and [2,3] Sigmatropic Rearrangement Reactions: Carbene Transfer with (SBF)4PRuCO) and Poly(SBF)4PRuCO 388
5.3 Asymmetric Cyclopropanation and Oxidation by Chiral Copoly(DMA)3(SBF)PRuCO, Copoly(DMA)2(SBF)2PRuCO and Poly(+)(MASBF)4PFeCl 390
6 Conclusion 393
Acknowledgements 394
References 394
10 Electrosynthesis of Oligo- and Polyporphyrins Based on Oxidative Coupling of Macrocycles 401
1 Introduction 401
2 Electropolymerization Through Substitutents Attached to the Porphyrin Ring 402
2.1 Oxidative Electropolymerization 402
2.2 Reductive Electropolymerization 406
3 Coupling Porphyrins Using Di-nucleophilic Compounds as Spacers 409
3.1 Nucleophilic Attack of Lewis Bases onto Oxidized Porphyrins 409
3.1.1 Description of the Reactivity 409
3.1.2 Another Alternative to Process Such Reaction: The Electrochemical Pathway 410
3.1.3 A More Controlled Reactivity Allowed by the Electrochemical Pathway 411
3.1.4 Mechanism 412
3.1.5 Extension to the Substitution of Porphyrin Analogs 413
3.2 Formation of Oligomers 414
3.2.1 Porphyrin Dimers and Oligomers 414
3.3 Formation of Polymers 416
3.3.1 A First Method, Using Porphyrins Substituted with Bipyridinium 416
3.3.2 A Second Method for Easy Polymerization of Porphyrins Using Nonfunctionalized Porphyrins 419
3.3.3 Characterization of the Polymers 421
3.3.4 Hybrids Organic–Inorganic Polymers 423
4 Direct C–C Couplings of Porphyrins 423
4.1 Formation of Oligomers 424
4.1.1 meso–meso Mono-Linked and Fused Doubly or Triply Linked Oligomers Obtained with Chemical Oxidants 424
4.1.2 Extension to the Formation of Porphyrin Analog Dimers 426
4.1.3 Meso–Meso and Meso-? Linked Oligomers Obtained by an Electrochemical Process 426
4.2 Formation of Polymers 427
4.2.1 Polymers with Directly Coupled Porphyrins Obtained by Chemical Pathway 427
4.2.2 Polymers with Directly Coupled Porphyrins Obtained by Electrochemical Pathway 428
5 Conclusion 429
References 429
Index 439

Erscheint lt. Verlag 3.5.2016
Zusatzinfo XV, 436 p. 263 illus., 159 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
Schlagworte Analytical Electrochemistry • Biomimesis • Electroanalysis • Electrochemistry • Electrosynthesis of N4 • Macrocyclic Metal Complexes • Metallophthalocyanines • metalloporphyrins • Photoassistance • Spectroelectrochemistry
ISBN-10 3-319-31332-0 / 3319313320
ISBN-13 978-3-319-31332-0 / 9783319313320
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99