Rock Fracture and Blasting -  Zong-Xian Zhang

Rock Fracture and Blasting (eBook)

Theory and Applications
eBook Download: PDF | EPUB
2016 | 1. Auflage
528 Seiten
Elsevier Science (Verlag)
978-0-12-802704-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
143,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Rock Fracture and Blasting: Theory and Applications provides the latest on stress waves, shock waves, and rock fracture, all necessary components that must be critically analyzed to maximize results in rock blasting. The positioning of charges and their capacity and sequencing are covered in this book, and must be carefully modeled to minimize impact in the surrounding environment.

Through an explanation of these topics, author Professor Zhang's experience in the field, and his theoretical knowledge, users will find a thorough guide that is not only up-to-date, but complete with a unique perspective on the field.


  • Includes a rigorous exposition of Stress Waves and Shock Waves, as well as Rock Fracture and Fragmentation
  • Provides both Empirical and Hybrid Stress Blasting Modeling tools and techniques for designing effective blast plans
  • Offers advanced knowledge that enables users to choose better blast techniques
  • Includes exercises for learning and training in each chapter


Dr. Zhang has published over 70 articles including 20 ones in international journals such as International Journal Rock Mechanic Mineral Science from Elsevier. Some of them are cited by more than 60-70 in Scopus. One book was also published in China. Has extensive experience on Rock Blasting problem solving.
Rock Fracture and Blasting: Theory and Applications provides the latest on stress waves, shock waves, and rock fracture, all necessary components that must be critically analyzed to maximize results in rock blasting. The positioning of charges and their capacity and sequencing are covered in this book, and must be carefully modeled to minimize impact in the surrounding environment. Through an explanation of these topics, author Professor Zhang's experience in the field, and his theoretical knowledge, users will find a thorough guide that is not only up-to-date, but complete with a unique perspective on the field. Includes a rigorous exposition of Stress Waves and Shock Waves, as well as Rock Fracture and Fragmentation Provides both Empirical and Hybrid Stress Blasting Modeling tools and techniques for designing effective blast plans Offers advanced knowledge that enables users to choose better blast techniques Includes exercises for learning and training in each chapter

Cover 1
Title Page 4
Copyright Page 5
Contents 8
Dedication 6
About the Author 20
Preface 22
Part I - Stress Waves and Shock Waves 24
Chapter 1 - Stress Waves 26
1.1 - Coordinates, wave velocity, and particle velocity 27
1.1.1 - Coordinates 27
1.1.2 - Wave Velocity and Particle Velocity 27
1.2 - Category of stress waves in solids 28
1.2.1 - Body Waves 28
1.2.1.1 - P-Waves 28
1.2.1.2 - S-Waves 29
1.2.2 - Surface Waves 29
1.2.2.1 - Rayleigh Waves 30
1.2.2.2 - Love Waves 30
1.2.2.3 - Stoneley Waves 31
1.2.3 - Stress Waves Relevant to Stress–Strain Relation of Materials 31
1.2.3.1 - Elastic Waves 31
1.2.3.2 - Plastic Waves 31
1.2.3.3 - Shock Waves 31
1.2.4 - Other Names of Waves 31
1.2.4.1 - Seismic Waves and Vibration Waves 31
1.2.4.2 - Taylor Waves, Rarefaction Waves, and Unloading Waves 31
1.3 - Reflection and transmission of elastic waves 32
1.3.1 - Reflection of Elastic Waves on a Free Surface 32
1.3.1.1 - A P-Wave Incident on a Free Surface 32
1.3.1.2 - An S-Wave Incident on a Free Surface 32
1.3.2 - Reflection and Transmission of Elastic Waves at an Interface Between Two Media 33
1.3.2.1 - Reflection and Transmission of an Incident P-Wave on a Plane Interface 33
1.3.2.2 - Reflection and Transmission of an Incident S-Wave on a Plane Interface 33
1.3.3 - Stress Waves from Rock Blasting 33
1.4 - Theory of one-dimensional elastic stress waves 33
1.4.1 - Wave Equation in One-Dimensional Condition 33
1.4.2 - Solution of Wave Equation 35
1.5 - Stress wave analysis using a Lagrangian diagram 37
1.5.1 - Lagrangian Diagram for Elastic Waves 37
1.5.2 - Lagrangian Diagram for Elastic–Plastic Loading Waves 38
1.6 - Impact of two elastic bars 40
1.6.1 - General Case 40
1.6.2 - Special Cases 41
1.6.2.1 - Case 1: An Elastic Bar Impacts on a Rigid Wall 41
1.6.2.2 - Case 2: A Rigid Bar Impacts on an Elastic Bar 41
1.6.2.3 - Case 3: An Elastic Bar Impacts Another Elastic Bar Which Stands Still 41
1.6.2.4 - Case 4: A Hard Bar Impacts a Soft Bar 42
1.6.2.5 - Case 5: A Soft Bar Impacts a Hard Bar 42
1.7 - Energy in an impact system 42
1.7.1 - Relation Between Kinetic Energy and Strain Energy 42
1.7.2 - Energy Transmission 43
1.8 - Propagation of elastic waves in two different materials 43
1.8.1 - General Case 43
1.8.2 - Special Cases 45
1.8.2.1 - A Stress Wave Propagates from a Soft to a Hard Material 45
1.8.2.2 - A Stress Wave Propagates from a Hard to a Soft Material 45
1.9 - Wave reflection on a rigid wall and on a free surface 45
1.9.1 - On a Rigid Wall 45
1.9.2 - On a Free Surface 45
1.10 - Propagation of elastic waves in three different materials 46
1.11 - Superposition of elastic stress waves 47
1.11.1 - Superposition of Two Compressive Elastic Stress Waves 47
1.11.2 - Superposition of One Tensile Wave and One Compressive Wave 47
1.11.3 - Superposition of Two P-Waves from Two Blastholes 48
1.12 - Spalling caused by stress wave loading 48
1.12.1 - A Triangular Wave Reflected from a Free Surface 49
1.12.2 - Spalling Caused by a Triangular Wave 50
1.13 - Split Hopkinson pressure bar system 52
1.14 - Attenuation and dispersion of stress waves 53
1.14.1 - Factors Influencing Attenuation and Dispersion 53
1.14.2 - Wave Attenuation Measured at Laboratory 55
1.14.3 - Wave Attenuation and Dispersion Measured in the Field 55
1.15 - Separation of two waves from a blast 55
1.16 - Sonic velocities and densities of different mediums 56
1.17 - Concluding remarks 57
1.17.1 - Velocities of P- and S-Waves 57
1.17.2 - Velocities of Body and Surface Waves 59
1.17.3 - Stress Waves and Shock Waves 59
1.17.4 - Stress Wave Reflection from a Free Surface 59
1.17.5 - Reflection and Transmission of Stress Waves Through an Interface 59
1.17.6 - Stresses in One-Dimensional Elastic Waves 60
1.17.7 - Impact of Two Elastic Bars 60
1.17.8 - Elastic Waves Propagating in Two Bars 60
1.17.9 - Elastic Waves to a Rigid Wall and a Free Surface 60
1.17.10 - Spalling Induced by Tensile Stress Waves 60
1.17.11 - Attenuation and Dispersion of Stress Waves in Rocks 60
1.18 - Exercises 60
References 61
Chapter 2 - Shock Waves 62
2.1 - Characteristics of shock waves 62
2.2 - Rankine–Hugoniot jump equations 63
2.2.1 - Developing Rankine–Hugoniot Jump Equations 63
2.2.1.1 - Equation of Mass Conservation 63
2.2.1.2 - Equation of Momentum Conservation 64
2.2.1.3 - Equation of Energy Conservation 64
2.2.2 - Solution to the Rankine–Hugoniot Jump Equations 65
2.2.2.1 - The U?u Hugoniot Equation 65
2.2.2.2 - The p?u Hugoniot Equation 65
2.2.2.3 - The p?v Hugoniot Equation 65
2.2.2.4 - Solution as Equation of State is Known 68
2.2.2.5 - Solving a Shock Wave Problem Based on a Known ?? Hugoniot 68
2.2.2.6 - Solving a Shock Wave Problem Based on a Given Equation of State 69
2.3 - Interaction of shock waves 73
2.3.1 - Impact of Two Different Materials 73
2.3.1.1 - Rankine–Hugoniot Jump Conditions 74
2.3.1.2 - Hugoniot Equations 76
2.3.2 - Impact Between Same Materials 77
2.3.3 - Shock Propagation from One Material to Another 79
2.3.3.1 - Solution to Case 1—ZA <  ZB
2.3.3.2 - Example for Case 1 80
2.3.3.3 - Solution to Case 2—ZA >  ZB
2.3.3.4 - Example for Case 2 81
2.3.4 - Collision of Two Shock Waves 82
2.4 - Rarefaction waves 84
2.5 - Shock wave attenuation 84
2.5.1 - Shock Wave Attenuation Due to Rarefaction 84
2.5.2 - Experimental Result for Shock Wave Attenuation in Different Materials 85
2.5.3 - Shock Wave Attenuation in Rock Blasting 87
2.6 - On applications of shock wave theory 87
2.6.1 - Shock Wave Traveling from Low Impedance Material to High Impedance Material 87
2.6.2 - Shock Wave Traveling from High Impedance Material to Low Impedance Material 87
2.6.3 - Shock Wave Traveling from One Material to a Free Surface 87
2.6.4 - Shock Wave Collision 87
2.7 - Concluding remarks 88
2.7.1 - Rankine–Hugoniot Jump Equations 88
2.7.2 - Hugoniot Relations 88
2.7.3 - p–u Hugoniot Equations 88
2.7.4 - Rarefaction 88
2.7.5 - Shock Wave Propagates from One Material to Another 88
2.7.6 - Shock Wave Reflection on a Free Surface 88
2.7.7 - Shock Wave Collision 88
2.7.8 - Shock Wave Attenuation 89
2.8 - Exercises 89
References 89
Part II - Rock Fracture and Fragmentation 90
Chapter 3 - Rock Fracture and Rock Strength 92
3.1 - Rocks 92
3.1.1 - Igneous Rock 93
3.1.2 - Metamorphic Rock 93
3.1.3 - Sedimentary Rock 94
3.1.4 - Fundamental Characteristics of Rocks 94
3.1.4.1 - A Compound of Multi-Mineral Grains 94
3.1.4.2 - Grain Boundaries 94
3.1.4.3 - Discontinuity 95
3.1.4.4 - Porosity 95
3.1.4.5 - Brittleness 95
3.2 - Geological structures 95
3.2.1 - Effect of Geological Structures on Rock Fracture 95
3.2.2 - Moving Geological Structures 96
3.3 - Rock strength 97
3.3.1 - Definition of Rock Strength 97
3.3.2 - Stress Concentration 98
3.3.3 - Intrinsic Cracks in a Material 99
3.3.4 - Theoretical Strength of Material 100
3.3.5 - Griffith Strength Relation 100
3.3.6 - Griffith Energy-Balance Concept 101
3.4 - Rock fracture and fracture toughness 101
3.4.1 - Fracture Toughness and Energy 101
3.4.2 - Stress Intensity Factor 102
3.4.3 - Rock Fracture in Engineering 103
3.5 - Rock fragmentation 103
3.6 - Relation between rock strengths 103
3.7 - Relation between fracture toughness and strength 104
3.7.1 - Relation Between Mode I Fracture Toughness and Tensile Strength of Rock 104
3.7.2 - Other Relations 105
3.8 - The reason why rock fracture toughness and rock strengths are related 105
3.9 - Process of rock fracture 105
3.9.1 - Link-up of Micro-Cracks 105
3.9.2 - Crack Extension 106
3.9.3 - Tensile or Shear Fracture 106
3.9.4 - Patterns of Rock Fracture in Compressive Strength Tests 106
3.10 - Energy required for rock fracture 106
3.10.1 - Energy Required for Fracture 106
3.10.2 - Energy Expenditure in Rock Fracture 107
3.11 - Discussion 107
3.11.1 - Evaluation of Rock Quality 107
3.11.2 - Mechanism of Rock Failure 107
3.11.3 - Energy Consumed in Rock Fracture 107
3.12 - Concluding remarks 108
3.12.1 - Characteristics of Three Types of Rocks 108
3.12.2 - Factors Affecting Rock Properties 108
3.12.3 - Basic Characteristics of Rocks 108
3.12.4 - Discontinuities of Rock 108
3.12.5 - Geological Structures 108
3.12.6 - Strength and Theoretical Strength 108
3.12.7 - Relation Between Different Rock Strengths 108
3.12.8 - Rock Strength 109
3.12.9 - Relation Between the Strength and Mode I Fracture Toughness of Rock 109
3.12.10 - Fracture Toughness and Fracture Energy 109
3.12.11 - Tensile Fracture in Micro-Scale During Compressive Testing 109
3.12.12 - Tensile Strength 109
3.12.13 - Energy Partitioning in Rock Fracture 109
3.12.14 - Characteristic Impedance of Rock 109
3.12.15 - Difference Between the Effective Fracture Surface Energy and the Energy Actually Consumed 110
3.13 - Exercises 110
References 110
Chapter 4 - Effect of Loading Rate on Rock Fracture 112
4.1 - Loading rate 113
4.1.1 - Definition of Loading Rate 113
4.1.2 - Static, Quasistatic, and Dynamic Loading 113
4.1.3 - Estimated Loading Rate in Rock Boring and Percussive Drilling 113
4.1.4 - How to Change Loading Rate 114
4.2 - Effect of loading rate on Young’s modulus 114
4.3 - Effect of loading rate on compressive rock strength 115
4.4 - Effect of loading rate on tensile rock strength 115
4.5 - Effect of loading rate on shear strength 116
4.6 - Effect of loading rate on rock fracture toughness 117
4.6.1 - Method for Measuring Fracture Toughness 117
4.6.2 - Fracture Toughness of Rock 117
4.6.3 - Effect of Loading Rate on Fracture Toughness of Other Brittle Materials 119
4.7 - Effect of loading rate on sizes of fragments 119
4.7.1 - Fragments From Compressive Strength Tests 119
4.7.2 - Fragments From Tensile Strength Tests 119
4.7.3 - Fragments From Fracture Toughness Tests 119
4.8 - Effect of loading rate on fracture surface characteristics 124
4.8.1 - Characteristics on Fracture Surfaces 124
4.8.2 - Characteristics on Vertical Sections of Fracture Surfaces 124
4.8.3 - Fractal Dimensions of Rock Fracture Surfaces 125
4.9 - Effect of loading rate on energy consumption in rock fracture 125
4.9.1 - Energy Partitioning in Rock Fracture and Compressive Tests 125
4.9.2 - Kinetic Energy in Rock Fracture 127
4.9.3 - Rotation Energy 127
4.9.4 - Experiments on Single-Particle Breakage and Energy Efficiency 128
4.9.5 - Energy Efficiency in Rock Fragmentation 129
4.10 - Engineering applications 129
4.11 - Concluding remarks 130
4.11.1 - Effects of Loading Rate on Rock Strengths and Fracture Toughness 130
4.11.2 - Effects of Loading Rate on Energy Partitioning and Efficiency 130
4.11.3 - Kinetic Energy of Fragments and Its Utilization in Rock Fracture and Fragmentation 131
4.11.4 - Reasons for the Loading Rate Effect on Rock Fracture Toughness 131
4.12 - Exercises 131
References 132
Chapter 5 - Effect of Temperature on Rock Fracture 134
5.1 - Thermal, physical, and mechanical properties of rock 135
5.1.1 - Thermal Properties of Rock 135
5.1.1.1 - Melting Temperature 135
5.1.1.2 - Specific Heat 135
5.1.1.3 - Thermal Conductivity 135
5.1.1.4 - Thermal Diffusivity 135
5.1.2 - Mechanical Properties of Rock 136
5.1.2.1 - Young’s Modulus 136
5.1.2.2 - Poisson’s Ratio 136
5.1.2.3 - Viscosity and Permeability 136
5.1.2.4 - Thermal Expansion 136
5.1.2.5 - Porosity 137
5.1.2.6 - P-Wave Velocity 137
5.1.3 - Thermal Stresses 137
5.2 - Compressive rock strength 137
5.2.1 - Compressive Strength Under Static Loading 137
5.2.1.1 - Heat-Treated Rocks 137
5.2.1.2 - Heating or Cooling Rate 138
5.2.1.3 - Strain Rate 138
5.2.1.4 - Heating Condition 139
5.2.1.5 - Low Temperature (< 0°C)
5.2.2 - Compressive Strength Under Dynamic Loading 140
5.3 - Tensile strength 140
5.3.1 - Heat-Treated Rock 140
5.3.2 - Low Temperature 140
5.4 - Fracture toughness 140
5.4.1 - Fracture Toughness Under Static Loading 140
5.4.1.1 - High Temperature 141
5.4.1.2 - Subzero and Room Temperature 141
5.4.1.3 - High Temperature With Confining Pressure 141
5.4.2 - Dynamic Fracture Toughness 142
5.4.2.1 - Fracture Toughness 142
5.4.2.2 - Breakage of Rock Specimens 142
5.4.2.3 - Characteristics of Crack Branching 142
5.4.3 - Energy Partitioning During Dynamic Fracture 144
5.4.3.1 - Energy Expenditure and Energy Efficiency From Dynamic Fracture Tests 144
5.4.3.2 - Energy Consumption During Static and Dynamic Compression Tests 145
5.5 - Characteristics of thermal damage 145
5.5.1 - Characteristics of Fracture 145
5.5.2 - Thermal Damage 148
5.5.2.1 - Thermal Cracking in Grain Boundaries and Within Grains 148
5.5.2.2 - Reasons for Thermal Damage 148
5.5.3 - Fracture Energy and Thermal Damage 149
5.6 - Rock fragmentation 149
5.6.1 - Thermally Assisted Liberation in Comminution 149
5.6.2 - Thermally Assisted Liberation in Secondary Metal Recovery 149
5.6.3 - Water and Thermal Spalling 149
5.7 - Cyclic temperature loading to rock 149
5.8 - Dynamic fracture mechanism of rock 150
5.9 - On applications 151
5.9.1 - Using High Temperature Combined With Low Loading Rate to Fracture Rock 151
5.9.2 - Improving Efficiency of Size Reduction Processes 151
5.9.3 - Microwave Radiation 151
5.9.4 - Thermal Mechanical Drilling and Tunneling 151
5.9.5 - Thermal Fracture of Stones 152
5.9.6 - Thermal Rock-Weakening Techniques 152
5.9.7 - Challenges in Rock Drilling, Boring, and Blasting due to High Temperature 152
5.10 - Concluding remarks 153
5.10.1 - Rock Properties 153
5.10.2 - Effect of High Temperature on Rock Strengths 154
5.10.3 - Effect of Heating or Cooling Rate and Heating Methods on Rock Fracture 154
5.10.4 - Effect of High Temperature on Rock Fracture Toughness 154
5.10.5 - Thermal Damage Caused by Heat Treatment 154
5.10.6 - Applications 154
5.11 - Exercises 154
References 155
Chapter 6 - Environmental Effects on Rock Fracture 158
6.1 - Water 158
6.1.1 - Water Saturation With Time 159
6.1.2 - Effective Pressure 159
6.1.3 - Effect of Water Saturation on Elastic Wave Velocity and Rock Fracture 160
6.1.4 - Effect of Water on Rock Strength and Fracture Toughness 160
6.1.5 - Effect of Water on the Stability of Tunnels and Slopes 162
6.1.6 - Water Effect and Loading Rate 163
6.1.7 - Effect of Water on Grinding 163
6.1.8 - Effect of Water on Blasting 163
6.2 - Chemical liquids 164
6.2.1 - Effect of Chemical Liquids on Compressive Strength 164
6.2.2 - Effect of Chemical Liquids on Tensile Strength of Limestone 164
6.2.3 - Effect of Chemical Liquids on Fracture Toughness 164
6.3 - Confining pressure 164
6.3.1 - Effect of Confining Pressure on Wave Velocity and Wave Attenuation 165
6.3.2 - Effect of Confining Pressure on Young’s Modulus and Poisson’s Ratio 167
6.3.3 - Effect of Confining Pressure on Compressive Strength 167
6.3.4 - Effect of Confining Pressure on Fracture Toughness 168
6.3.5 - Effect of Confining Pressure on the Stability of Tunnel 168
6.4 - Cyclic loading 171
6.4.1 - Fatigue Strength of Rock 171
6.4.2 - Effect of Cyclic Number on Fatigue Strength 173
6.4.3 - Effect of Cyclic Amplitude on Fatigue Strength 173
6.4.4 - Effect of Cyclic Frequency on Fatigue Strength 173
6.4.5 - Fatigue Strength of Saturated, Frozen, and Jointed Rock 173
6.5 - Concluding remarks 174
6.5.1 - Effect of Water on Rock Fracture 174
6.5.2 - Effect of Chemical Fluids on Rock Fracture 174
6.5.3 - Effect of Confining Pressure on Rock Fracture 174
6.5.4 - Effect of Cyclic Loading on Rock Fracture 174
6.6 - Exercises 175
References 175
Chapter 7 - Rock Drilling and Boring 178
7.1 - Methods for rock drilling and boring 178
7.1.1 - Percussive Drilling 178
7.1.2 - Rotary Drilling 180
7.1.3 - Rock Boring 182
7.2 - Mechanism of rock breakage 184
7.2.1 - Indenters 184
7.2.2 - Elastic Stress Distribution 184
7.2.3 - Elastic–Plastic Indentation 187
7.2.4 - Crack Length and Penetration 188
7.2.5 - Mechanisms of Rock Drilling 190
7.3 - Loading rate AND temperature 191
7.3.1 - Loading Rate 191
7.3.2 - Temperature 191
7.4 - Discharge of cuttings during drilling and boring 192
7.4.1 - Effect of Cutting Discharge on the Speed of Drilling and Boring 192
7.4.2 - Methods for Discharging Cuttings 192
7.5 - Deviation 192
7.6 - Operational skills 192
7.6.1 - Choosing Drilling Methods and Drill Hole Sizes 192
7.6.2 - Drilling Speed and Drill Bit Reshaping 193
7.6.3 - Correct Operation 193
7.7 - Potential to development 193
7.7.1 - Rock Boring 193
7.7.2 - Percussive Drilling 194
7.7.3 - Rotary Drilling 195
7.8 - Concluding remarks 195
7.8.1 - Percussive Drilling 195
7.8.2 - Rotary Drilling 196
7.8.3 - Rock Boring 196
7.8.4 - Potential Development of Rock Drilling and Boring 196
7.9 - Exercises 196
Appendix I 197
References 198
Part III - Explosive Donation in a Blast Hole 200
Chapter 8 - Explosives and Detonators 202
8.1 - History 202
8.2 - Categories of explosives 203
8.2.1 - Primary Explosives 203
8.2.2 - Secondary Explosives 203
8.2.3 - Tertiary Explosives 203
8.2.4 - Ammonium Nitrate 203
8.2.5 - Water Gels or Slurries 203
8.2.6 - Dynamite 204
8.2.7 - Explosives in Underground Coal Mining 204
8.3 - ANFO explosives 204
8.4 - Emulsion explosives 204
8.5 - ANFO–emulsion mixtures, low-density explosives, and propellants 205
8.5.1 - ANFO–Emulsion Mixtures 205
8.5.2 - Low-Density Explosives 205
8.5.3 - Propellants 205
8.6 - Initiation of explosives 205
8.6.1 - Explosion and Oxygen Balance 205
8.6.2 - Connection Between Detonators and Detonating Cord 205
8.6.3 - Charging Operation 207
8.6.4 - Sympathetic Detonation 207
8.6.5 - Desensitization 208
8.6.6 - Deflagration 208
8.7 - Detonators 208
8.7.1 - Electric Detonators 209
8.7.2 - Nonelectric Detonators 209
8.7.3 - Electronic Detonator 209
8.7.4 - Detonating Cord 210
8.8 - Precision in the initiation of detonators 210
8.9 - Charge diameter and VOD 211
8.9.1 - VOD of ANFO and Emulsions 211
8.9.2 - Energy Loss 211
8.9.3 - Critical Diameter 213
8.10 - Matching of explosives and rock mass 213
8.10.1 - Case 1—?? 213
8.10.2 - Case 2—?? 213
8.10.3 - VOD and Fragmentation 215
8.11 - Safety in charging operation 215
8.12 - On the relation between VOD and rock fracture 216
8.13 - Concluding remarks 216
8.13.1 - Oxygen Balance and Explosive Energy 216
8.13.2 - ANFO Explosives 216
8.13.3 - Emulsion Explosives 216
8.13.4 - Heavy ANFO 217
8.13.5 - Electric Detonators 217
8.13.6 - Nonelectric Detonators 217
8.13.7 - Electronic Detonators 217
8.13.8 - Precision of Initiation 217
8.13.9 - Matching of Explosive and Rock Mass 217
8.14 - Exercises 217
References 218
Chapter 9 - Theory of Detonation 220
9.1 - Introduction 220
9.2 - Definitions 221
9.2.1 - Detonation 221
9.2.2 - Steady Detonation 221
9.2.3 - Ideal and Nonideal Detonation 221
9.2.4 - Entropy 221
9.2.5 - Isentrope 221
9.3 - CJ detonation theory 221
9.3.1 - CJ Model 221
9.3.2 - Solution to the CJ Model 222
9.3.3 - Estimating the CJ Values in Condensed Explosive 223
9.3.4 - Solution to CJ Theory 224
9.3.5 - Example for Pressure Estimate 224
9.4 - ZND theory 225
9.4.1 - ZND Model 225
9.4.2 - Solution to the ZND Model 226
9.4.3 - Limitation of CJ and ZND Theories 229
9.5 - Direct numerical solution 231
9.6 - Two-dimensional detonation theories 232
9.6.1 - A General Description of 2D Nonideal Steady Detonation 232
9.6.2 - Detonation Shock Dynamics 233
9.6.3 - Streamline Approach 233
9.7 - Equation of state 234
9.7.1 - EoS Without Explicit Chemistry 234
9.7.2 - EoS with Explicit Chemistry 234
9.7.3 - Hugoniot for Commercial Explosives and Rocks 234
9.8 - Chemical reaction rate 235
9.9 - Rarefaction waves 236
9.10 - Summary 237
9.10.1 - CJ Theory 237
9.10.2 - ZND Theory 238
9.10.3 - Limitation of CJ and ZND Theories 238
9.10.4 - Direct Numerical Solution 238
9.10.5 - Detonation Shock Dynamics 238
9.10.6 - Streamline Approach 238
9.10.7 - EoS and Chemical Reaction Rate 238
9.10.8 - Rarefaction Waves 238
9.11 - Exercises 238
References 239
Chapter 10 - Single-Hole Blasting 240
10.1 - Process of rock blasting in a single hole 240
10.1.1 - Blast-Caused Fracture Pattern 240
10.1.2 - Blasting Process in a Blasthole 242
10.2 - Borehole pressures 243
10.2.1 - Definitions of Borehole Pressure and Detonation Wave 243
10.2.2 - Borehole Pressure Measured From Block Models 244
10.2.3 - Borehole Pressure From Field Measurements 245
10.2.4 - Summary of Borehole Pressure Measurement 245
10.3 - Stress waves close to boreholes 246
10.4 - Borehole expansion 247
10.5 - Gas velocity 248
10.6 - Crushed zone 248
10.7 - Velocity of crack propagation 248
10.7.1 - Theoretical Prediction 248
10.7.2 - Measurement 249
10.8 - Movement of fragments during blasting 249
10.8.1 - Measurement 249
10.8.2 - Factors Influencing Burden Velocity 249
10.8.2.1 - Charge Weight and Charge Length 249
10.8.2.2 - Burden 250
10.9 - Disturbed zone surrounding a blasthole 251
10.9.1 - Measurements on Fractured Zone 251
10.9.1.1 - Measurements From Decoupled Charge in the Field 252
10.9.2 - Empirical Formulas for Fractured Zone 252
10.10 - Energy distribution 253
10.10.1 - Equation of Energy Distribution 253
10.10.2 - Determination of Each Form of Energy 253
10.10.2.1 - Fragmentation Energy 253
10.10.2.2 - Seismic Energy 253
10.10.2.3 - Kinetic Energy 254
10.10.2.4 - Rotation Energy ER 254
10.10.2.5 - Energy Carried by Gases Escaping from Stemming 254
10.10.2.6 - Internal Fracturing Energy 254
10.10.2.7 - Other Forms of Energy 255
10.10.3 - Measurement of Each Form of Energy 255
10.10.3.1 - Fragmentation Energy, Seismic Energy, and Kinetic Energy 255
10.10.3.2 - Energy Carried Away by Gas Escaping Through Collar 255
10.10.3.3 - Internal Fracturing Energy 255
10.10.3.4 - Seismic Energy and Rock Confinement 255
10.11 - Concluding remarks 256
10.11.1 - Detonation Wave and Borehole Pressure 256
10.11.2 - Blast-Caused Borehole Expansion, Crushed Zone, and Fractured Zone 256
10.11.3 - Crack Velocity in Rock 256
10.11.4 - Velocity of Burden or Fragments 256
10.11.5 - Fractured Zone 256
10.11.6 - Energy Distribution in Blasting 257
10.12 - Exercises 257
References 257
Part IV - Basic Parameters of Rock Blasting 260
Chapter 11 - Free Surface and Swelling in Blasting 262
11.1 - Weakness of rock materials 262
11.2 - Role of free surface 262
11.2.1 - Source of Tensile Stresses 262
11.2.2 - Increase in Energy Efficiency 263
11.2.3 - Reduction of Ground Vibrations 263
11.3 - Dynamic tensile fracture—spalling in rock blasting 263
11.3.1 - Principle of Spalling 263
11.3.2 - Spalling Close to Free Surface Due to Blasting 263
11.4 - Spalling in the free surface far from explosive charge 268
11.4.1 - First Blast 268
11.4.2 - Second Blast 269
11.4.3 - Third Blast 270
11.4.4 - Spalling in the Top of Drift 271
11.4.5 - Summary on Spalling 271
11.5 - Swelling in blasting 273
11.5.1 - Case 1—Natural Swelling 273
11.5.2 - Case 2—A Limited Space for Swelling 273
11.5.3 - Case 3—A Small Swelling Space 273
11.5.4 - Case 4—Dynamic Swelling Space 274
11.6 - Creation of free surface and swelling space by blasting 275
11.7 - On applications 276
11.8 - Concluding remarks 276
11.8.1 - Free Surface in Rock Blasting 276
11.8.2 - Geometrical Shape of a Free Surface 277
11.8.3 - Free Surface and Rock Support 277
11.8.4 - Swelling Space 277
11.9 - Exercises 277
References 277
Chapter 12 - Burden and Spacing 278
12.1 - Angle of breakage 278
12.2 - Specific charge 280
12.2.1 - Definition of Specific Charge 280
12.2.2 - Actual Stress and Energy Distribution 280
12.2.2.1 - Initiation Position 280
12.2.2.2 - Quantity of Initiation Positions 280
12.2.2.3 - Stemming 281
12.2.2.4 - Delay Time and Initiation Accuracy 281
12.2.2.5 - Misfire 281
12.2.2.6 - Coupled and Decoupled Charge 282
12.2.2.7 - Drilling Plan 282
12.2.3 - Determining the Specific Charge 282
12.3 - Diameter of blastholes 282
12.3.1 - Velocity of Detonation (VOD) 282
12.3.2 - Quality of Rock Drilling 283
12.3.3 - Production and Productivity 283
12.3.4 - Fragmentation 283
12.3.5 - Cost of Development 283
12.3.6 - Back Break 283
12.3.7 - Ground Vibrations 284
12.3.8 - Determining the Diameter of Blasthole 284
12.4 - Burden 284
12.4.1 - Factors Related to Burden 284
12.4.1.1 - Diameter of Blasthole 284
12.4.1.2 - Decoupled Charge 284
12.4.1.3 - Rock Properties 284
12.4.1.4 - Explosive 284
12.4.1.5 - Specific Charge 285
12.4.1.6 - Wave Attenuation 285
12.4.1.7 - Fragmentation 285
12.4.1.8 - Production and Productivity 285
12.4.1.9 - Vibrations 285
12.4.2 - Determining the Burden 285
12.4.2.1 - Empirical Method 285
12.4.2.2 - Determining the Burden in Surface Control 285
12.4.2.3 - Determining the Burden in Production Blasting 286
12.5 - Spacing 288
12.5.1 - Relation Between Burden and Spacing in Ordinary Blasting 288
12.5.1.1 - Case S> B
12.5.1.2 - Case S?B 289
12.5.2 - Relation Between Burden and Spacing in Smooth Blasting 291
12.6 - Concluding remarks 291
12.6.1 - Angle of Breakage 291
12.6.2 - Specific Charge 291
12.6.3 - Diameter of Blasthole 292
12.6.4 - Burden 292
12.6.5 - Spacing 292
12.7 - Exercises 292
References 292
Chapter 13 - Stemming and Charge Length 294
13.1 - Effect of stemming on detonation wave and energy 294
13.1.1 - Energy Loss From Collar and Stemming 294
13.1.2 - Reflection-Induced Variation of Detonation Wave 295
13.2 - Role of stemming in blasting 297
13.2.1 - To Avoid or Reduce Energy Loss 297
13.2.1.1 - Analysis 297
13.2.1.2 - Confirmation From Measurements 297
13.2.2 - To Keep Explosive in Blastholes 298
13.2.3 - To Reduce Fly Rock and Air Blast 298
13.2.4 - To Reinforce Borehole Pressure by Using Better Stemming Materials 298
13.2.5 - To Increase Crack Density and Crack Length 298
13.2.6 - To Consume Some Energy 298
13.3 - Example of improved fragmentation by better stemming 299
13.4 - Determining the sizes and material of stemming 299
13.4.1 - Case A—One Primer Placed Close to the Collar 300
13.4.2 - Case B—One Primer Placed at the Middle of Charged Hole 300
13.4.3 - Case C—One Primer Placed at the Bottom of Charged Hole 300
13.5 - Charge length 301
13.6 - Concluding remarks 302
13.6.1 - Effect of Stemming on Detonation Energy 302
13.6.2 - Effect of Stemming on Detonation Wave and Rock Fracture 302
13.6.3 - Functions of Stemming 303
13.6.4 - How to Choose Correct Stemming 303
13.6.5 - Necessity of Stemming 303
13.6.6 - Charge Length 303
13.7 - Exercises 303
References 304
Chapter 14 - Air Deck and Smooth Blasting 306
14.1 - Air deck 306
14.1.1 - Background 306
14.1.2 - Laboratory Experiments 306
14.1.3 - Parameters of Air Deck Charge 308
14.1.4 - Results From Industrial Applications 308
14.1.5 - Recommendation for Air Deck Charge 309
14.2 - Decoupled charge 309
14.2.1 - Definition of Decoupling and Coupling 309
14.2.2 - Mechanism of Decoupled Charge 310
14.2.3 - Mechanism of Decoupled Charge With Liquid or Solid Materials 310
14.2.4 - Effect of Decoupling Ratio on Fragmentation 311
14.2.5 - Application of Decoupled Charge 312
14.2.6 - Air Cavity Charge 312
14.3 - Deck charge 313
14.3.1 - Principles of Deck Charge 313
14.3.2 - Shock Wave Attenuation in Stemming 314
14.4 - Principles of smooth blasting and presplit technique 315
14.4.1 - Stress Analysis 315
14.4.2 - Experiments 316
14.5 - Smooth blasting 316
14.5.1 - Burden and Spacing 316
14.5.2 - Factors Influencing Quality of Smooth Blasting 317
14.5.3 - Result From Smooth Blasting 317
14.6 - Presplit blasting 318
14.6.1 - Spacing 318
14.6.2 - Examples from Rock Engineering 318
14.7 - Special methods in smooth and presplit blasting 318
14.8 - Concluding remarks 319
14.8.1 - Air Deck Technique 319
14.8.2 - Decoupled Charge 319
14.8.3 - Deck Charge 319
14.8.4 - Smooth Blasting 319
14.8.5 - Crack Velocity and Stress Superposition 319
14.8.6 - Presplit Technique 319
14.9 - Exercises 320
References 320
Chapter 15 - Primer Placement 322
15.1 - Wastage of detonation energy 322
15.1.1 - Single-Primer Placement 322
15.1.1.1 - Primer Close to Collar 322
15.1.1.2 - Primer at Middle of Charge 323
15.1.1.3 - Primer Between Middle and Bottom of Charged Hole 323
15.1.2 - Double-Primer Placement 323
15.2 - Primer position and misfires 324
15.2.1 - The Reason for Misfires 325
15.2.2 - Field Measurements of Misfires in Sublevel Caving 326
15.3 - Stress wave propagation and stress distribution 326
15.3.1 - Single-Primer Placement 326
15.3.2 - Double-Primer Placement 328
15.3.2.1 - Shock Wave Collision 328
15.3.2.2 - Stress Distribution 328
15.4 - Amplitude of stresses in rock 330
15.5 - Rock fragmentation 330
15.5.1 - Fragmentation From Single-Primer Placement 331
15.5.2 - Fragmentation From Double-Primer Placement 331
15.6 - Ore extraction 331
15.6.1 - Single-Primer Placement 331
15.6.2 - Double-Primer Placement 332
15.7 - Productivity 334
15.7.1 - Relation Between Ore Extraction and Fragmentation 334
15.7.2 - Relation Between Ore Extraction and Iron Content 334
15.8 - Mining safety relevant to brow damage 334
15.8.1 - Single-Primer Placement 334
15.8.2 - Double-Primer Placement 335
15.9 - Potential economy of improving blasting 335
15.10 - On double-primer placement 335
15.11 - Concluding remarks 335
15.12 - Exercises 336
References 337
Chapter 16 - Delay Times 338
16.1 - Reasons for a delay time 338
16.1.1 - Ground Vibrations 338
16.1.2 - Rock Damage Nearby 340
16.1.3 - Seismic Events 340
16.1.4 - Rock Fragmentation 340
16.2 - Factors to be considered in determining delay time 340
16.2.1 - Stress Distribution 340
16.2.2 - Crack Propagation 341
16.2.3 - Detonation Waves 341
16.2.4 - Confinement and Boundary Conditions 342
16.2.5 - Rock Fracture Nearby 342
16.2.6 - Vibrations in Far Field 342
16.2.7 - Movement of Fragments 342
16.3 - Delay time in a single blasthole 342
16.3.1 - One Detonator Position 342
16.3.2 - Multidetonator Positions 344
16.3.2.1 Same Delay Time 344
16.3.2.2 Different Delay Times 344
16.4 - Delay time between two adjacent blastholes 344
16.4.1 - Background 344
16.4.2 - Fragmentation Radius Rfg Smaller Than Spacing S 345
16.4.3 - Fragmentation Radius Rfg Equal to or Larger Than Spacing S 349
16.5 - Delay time between adjacent rows 350
16.5.1 - Stress Wave Superposition 350
16.5.2 - Collision of Fragments 350
16.5.2.1 Collision Between Fragments From Multirows in Open Pit Blasting 350
16.5.2.2 Collision of Fragments in Sublevel Caving 351
16.6 - Simultaneous initiation in production blasts 351
16.6.1 - Stress Analysis 352
16.6.2 - Test Results 352
16.7 - Comments on delay time 353
16.8 - Concluding remarks 353
16.8.1 - Reasons for a Delay Time and Factors Affecting Delay Time 353
16.8.2 - Delay Time in a Single Hole 353
16.8.3 - Stress Distribution and Delay Time 353
16.8.4 - Simultaneous Blasting 354
16.9 - Exercises 354
References 354
Part V - Rock Blasting in Engineering 356
Chapter 17 - Rock Blasting in Open Cut and Tunneling 358
17.1 - Introduction 358
17.2 - Open cut blasting in underground mining 359
17.2.1 - Effect of Open Cut on Mining Production 359
17.2.2 - Cut Blasting Methods in Underground Mining 359
17.2.2.1 - Raise Boring 360
17.2.2.2 - Slot Drilling 363
17.3 - Cut Blasting in Drifting and Tunneling 366
17.3.1 - Cut Blasting With Two Uncharged Holes 367
17.3.2 - Other Methods for Cut Blasting 367
17.4 - Detonators and Delay Time 369
17.4.1 - Delay Time 369
17.4.2 - Detonators 369
17.5 - Slashing hole blasting 369
17.5.1 - Burden 369
17.5.2 - Delay Time 369
17.5.3 - Initiation Sequence 370
17.6 - Disturbed zone 370
17.6.1 - Influence of Disturbed Zone on Drift Stability and Safety 370
17.6.2 - Influence of Disturbed Zone on Rock Support 370
17.6.3 - Factors Influencing Disturbed Zone 370
17.7 - Blastholes in roofs and walls 371
17.7.1 - Charge and Burden 371
17.7.2 - Delay Time and Initiation 372
17.8 - Bottom and slashing holes 373
17.9 - Quality, safety, and economy 373
17.9.1 - Cut Blasting 373
17.9.2 - In Situ Stress Field 373
17.9.3 - Decoupled Charge 373
17.10 - Concluding remarks 374
17.10.1 - Open Cut Blasting 374
17.10.2 - Cut Blasting in Tunneling 375
17.10.3 - Disturbed Zone and Decoupled Charge 375
17.11 - Exercises 375
References 376
Chapter 18 - Rock Blasting in Open Pit Mining 378
18.1 - Drilling plan 378
18.1.1 - Burden and Spacing 378
18.1.2 - Subdrilling 379
18.1.2.1 - Role of Subdrilling 379
18.1.2.2 - Length of Subdrilling 380
18.1.3 - Inclination of Bench 380
18.1.3.1 - Back Break 380
18.1.3.2 - Production Volume 381
18.1.3.3 - Fragmentation Close to Bench Floor 381
18.2 - Blast plan 381
18.2.1 - Stemming 382
18.2.2 - Deck Charge and Air Deck 382
18.2.2.1 - Deck Charge 382
18.2.2.2 - Air Deck 382
18.2.3 - Primers 383
18.2.3.1 - Single Primer in Each Borehole 383
18.2.3.2 - Two Primers in Each Borehole 384
18.2.3.3 - Multiple-Primer Positions in Each Borehole 385
18.2.4 - Initiation and Delay Time 385
18.2.4.1 - Reasons for a Delay Time 385
18.2.4.2 - Choosing a Delay Time Between Holes and Between Rows 385
18.2.4.3 - Initiation Sequence 386
18.3 - Fragmentation 386
18.3.1 - Stress Superposition 386
18.3.1.1 - Pyrotechnic or Nonelectronic Detonators 386
18.3.1.2 - Electronic Detonators 386
18.3.2 - Shock Wave Collision 386
18.3.3 - Barrier to Free Face 387
18.3.3.1 - Principles of Barrier to Free Face 387
18.3.3.2 - Measures for Making a Barrier to Free Face 388
18.3.4 - Increase in Specific Charge 389
18.4 - Final pit slope 389
18.4.1 - Slope Angle and Mining Cost 389
18.4.2 - Quality and Stability of Slope 389
18.5 - Safety and environment 390
18.5.1 - Collapse of Slopes 390
18.5.2 - Fly Rocks and Air Blasts 390
18.5.2.1 - Insufficient Stemming 390
18.5.2.2 - Loose Rock or Discontinuity in Rock Mass 391
18.5.2.3 - Top Initiation 391
18.5.2.4 - High Specific Charge 391
18.5.3 - Ground Vibrations 392
18.6 - On presplit method and production blasting 392
18.7 - Concluding remarks 392
18.7.1 - Subdrilling 392
18.7.2 - Inclination of Bench 393
18.7.3 - Stemming 393
18.7.4 - Deck Charge and Air Deck 393
18.7.5 - Primer Placement 393
18.7.6 - Fragmentation 393
18.7.7 - Stability of Open Pit Slopes 393
18.7.8 - Fly Rock and Air Blast 393
18.8 - Exercises 393
References 394
Chapter 19 - Rock Blasting in Underground Mining 396
19.1 - Advantages and disadvantages of sublevel caving 396
19.2 - Drilling and charging plan 397
19.2.1 - Burden and Spacing 397
19.2.1.1 - Burden 397
19.2.1.2 - Spacing 397
19.2.2 - Length of Blastholes 398
19.2.2.1 - Large Ore Body 398
19.2.2.2 - Narrow Ore Body 399
19.2.3 - Uncharged Length 400
19.2.3.1 - As Delay Time Is Longer Than Fragmentation Time 400
19.2.3.2 - As Delay Time Is Shorter Than Fragmentation Time 400
19.2.4 - Precision of Rock Drilling 400
19.3 - Inclination of rings 400
19.3.1 - Loading and Ore Flow 400
19.3.2 - Brow Protection 402
19.4 - Single- or multiple-ring blasting 403
19.4.1 - Single-Ring Blasting 403
19.4.2 - Double-Ring Blasting 404
19.5 - Delay time and initiation sequence 405
19.5.1 - Delay Time 405
19.5.2 - Initiation Sequence 405
19.5.3 - Initiation and Delay Time in Special Cases 405
19.6 - Open cut and drifting 406
19.7 - Stemming, air deck, and detonator placement 406
19.8 - Back break and brow damage 407
19.8.1 - Back Break 407
19.8.2 - Brow Damage 408
19.8.2.1 - Consequences Caused by Brow Damage 408
19.8.2.2 - Factors Influencing Brow Damage 408
19.8.2.3 - Measures for Reducing Brow Damage 408
19.9 - Misfires 410
19.10 - Fragmentation, ore recovery, and mining profit 410
19.11 - Safety, environment, and vibration control 411
19.11.1 - Safety 411
19.11.2 - Environment 411
19.11.3 - Ground Vibrations 412
19.12 - Sublevel-caving blasting in the future 412
19.13 - Concluding remarks 413
19.13.1 - Characteristics of Sublevel Caving Blasting 413
19.13.2 - Subdrilling, Deviation, and Inclination 413
19.13.3 - Single-Ring Blasting and Double-Ring Blasting 414
19.13.4 - Delay Time 414
19.13.5 - Brow Damage 414
19.13.6 - Misfire 414
19.13.7 - Other Issues Related to Sublevel Caving Blasting 414
19.13.8 - Underground Blasting in the Future 414
19.14 - Exercises 414
References 415
Chapter 20 - Numerical Simulation of Rock Blasting 416
20.1 - Fracture characteristics of rock 416
20.1.1 - Characteristics of Rock Material 416
20.1.1.1 - Composition 416
20.1.1.2 - Boundary and Porosity 416
20.1.1.3 - Intergranular and Intragranular Fracture 417
20.1.1.4 - Geological Structures 417
20.1.2 - Characteristics of Rock Fracture 418
20.1.2.1 - Attenuation 418
20.1.2.2 - Fracture Mode 418
20.1.2.3 - Loading Rate Effect 418
20.1.2.4 - Confining Pressure Effect 418
20.1.2.5 - Fatigue Strength 418
20.1.2.6 - Fluid or Water Effect 418
20.2 - Process of rock blasting in a blasthole 419
20.2.1 - Detonation Waves at Different Positions 419
20.2.2 - Detonation Waves and Gases 420
20.3 - Crushing, fracture, and fragmentation 420
20.3.1 - Crushed Zone 420
20.3.2 - Rock Fracture 421
20.3.3 - Rock Fragmentation 421
20.4 - Shock wave collision 422
20.5 - Stemming 422
20.6 - Malfunction or misfire 423
20.7 - Numerical simulation of detonation 423
20.7.1 - Ideal Detonation 423
20.7.2 - Nonideal Detonation 423
20.7.3 - Equations of State for Detonation Products 424
20.7.3.1 - JWL EoS for Explosive Detonation 424
20.7.3.2 - Williamsburg EoS 424
20.8 - Numerical modeling of rock blasting 425
20.8.1 - Models Used in Rock Fracture 425
20.8.2 - Modeling Rock Fracture by Blasting 425
20.8.3 - Blast Modeling for Whole Process From Detonation to Muckpile 426
20.8.4 - Challenges in Blast Modeling 428
20.9 - Concluding remarks 429
20.10 - Exercises 429
References 429
Part VI - Rock Blasting on Economy, Safety, and Vibrations 432
Chapter 21 - Optimum Fragmentation 434
21.1 - Effects of fragmentation on mining engineering 434
21.1.1 - Effect of Fragmentation on Energy Consumption 434
21.1.2 - Effect of Fragmentation on Ore Recovery 436
21.1.3 - Effect of Fragmentation on Productivity 436
21.1.3.1 - Extraction Speed 436
21.1.3.2 - Mill Throughput 436
21.2 - Factors influencing fragmentation 437
21.2.1 - Explosives 437
21.2.2 - Initiators 437
21.2.3 - Rocks 438
21.2.4 - Drilling Plan 438
21.2.5 - Blast Plan 438
21.3 - Definition of optimum fragmentation 438
21.4 - Possibility of optimum fragmentation 439
21.4.1 - Possibility of Changing Energy Distribution 439
21.4.1.1 - Different Energy Efficiencies 439
21.4.1.2 - Effects of Blast-Induced Cracks on Grinding 439
21.4.2 - To Increase Energy Efficiency in Blasting 441
21.4.3 - To Increase Energy Efficiency in Other Operations 441
21.5 - Measures for optimum fragmentation 441
21.5.1 - Redistribution of Energy Consumption 441
21.5.1.1 - Feasibility of Redistribution of Energy Expenditure 442
21.5.1.2 - Measures for Energy Redistribution 442
21.5.2 - To Increase Explosive Energy in Blasting 442
21.5.3 - To Increase Energy Efficiency in Individual Operations 443
21.5.4 - Ore Recovery, Productivity, Safety, and Environment Control 443
21.6 - Laboratory tests and industry practices on optimum fragmentation 443
21.6.1 - Laboratory Tests 443
21.6.2 - Industry Practices 443
21.7 - How to achieve optimum fragmentation 444
21.7.1 - Step 1—To Make Successful Blasting 444
21.7.2 - Step 2—To Achieve Optimum Fragmentation 444
21.8 - Concluding remarks 444
21.9 - Exercises 445
References 445
Chapter 22 - Effect of Blasting on Engineering Economy 448
22.1 - Introduction 448
22.2 - Ore recovery 448
22.2.1 - Definition 448
22.2.2 - Ore Loss 450
22.2.2.1 - Loss of Natural Resources 450
22.2.2.2 - Increase in Mining Costs 450
22.2.2.3 - Earlier Heavy Investments Such as Developing New Main Levels 451
22.3 - Dilution 452
22.4 - Measures for increasing ore recovery 452
22.4.1 - Scientific Rock Blasting 452
22.4.2 - Optimal Mining Planning 454
22.4.3 - Correct Control of Cutoff Grade 454
22.5 - To increase productivity by blasting 455
22.5.1 - Speed of Ore Extraction 455
22.5.2 - Relation Between Fragmentation and Recovery 456
22.6 - To reduce fractured zone so as to reduce costs in rock support 457
22.7 - Optimization of fragmentation 457
22.8 - Concluding remarks 458
22.8.1 - Direct Economic Loss Due to Ore Loss in Mining 458
22.8.2 - Indirect Economic Losses Due to Ore Loss in Mining 458
22.8.3 - Dilution-Caused Economic Loss 458
22.8.4 - Measures for Increasing Ore Recovery 458
22.8.5 - Effect of Fragmentation on Mining Productivity 458
22.8.6 - Effect of Blasting on Rock Support 458
22.9 - Exercises 458
References 459
Chapter 23 - Safety in Rock Engineering 460
23.1 - Rock spalling 460
23.1.1 - Location of Spalling 460
23.1.2 - Factors Affecting Spalling 461
23.1.3 - Estimate and Reduction of Spalling 462
23.2 - Remained roofs 463
23.2.1 - Common Method for Breaking Down a Remained Roof 463
23.2.2 - New Method for Breaking Down a Remained Roof 464
23.3 - Seismic events 465
23.3.1 - Simplest Principle of Seismic Events 465
23.3.2 - Relation Between Blasting and Seismic Events 466
23.3.3 - Characteristics of Seismic Events in Underground Mining 466
23.3.3.1 - Location of Seismic Events 466
23.3.3.2 - Characteristics of Stresses in Seismic Events 466
23.3.4 - Consequence of Seismic Events 469
23.3.5 - Measures for Reducing Seismic Events 469
23.3.5.1 - To Reduce the Weight of Explosive That Is Initiated Instantaneously 469
23.3.5.2 - Correct Loading Method Under Hanging Wall 470
23.3.5.3 - To Avoid Dynamic Impact by Caved Rock 471
23.4 - Rock fall 472
23.4.1 - Reasons for Rock Fall 472
23.4.2 - Small-Scale Rock Fall 473
23.4.3 - Large-Scale Rock Fall 473
23.4.4 - Measures for Reducing Rock Fall 473
23.5 - Brow damage 474
23.6 - Shock wave damage in underground mines 477
23.6.1 - Shock Wave Damage Caused by Blasting 477
23.6.2 - Measures for Reducing Shock Wave Damage by Blasting 477
23.7 - Slope collapse in open pit mines 478
23.8 - Fly rock and air blast in open pit mines 478
23.9 - Rock burst 478
23.10 - Explosives and detonators 479
23.11 - Concluding remarks 480
23.11.1 - Spalling in Tunnel Surfaces 480
23.11.2 - Remained Roof 480
23.11.3 - Seismic Events 480
23.11.4 - Rock Fall 480
23.11.5 - Brow Damage 480
23.11.6 - Air Shock Damage 480
23.11.7 - Slope Collapse 480
23.11.8 - Fly Rock, Air Blast, and Rock Burst 480
23.12 - Exercises 481
References 481
Chapter 24 - Reduction of Ground Vibrations 482
24.1 - Characteristics of blast-induced ground vibrations 482
24.1.1 - Amplitude of Vibration Waves 483
24.1.2 - Waveform of Vibrations 484
24.1.3 - Technical Ways Toward Vibration Control 484
24.1.4 - Evaluation and Regulations of Ground Vibrations 486
24.2 - To reduce original stress waves caused by blasting 486
24.2.1 - To Choose Smaller Diameter of Borehole 486
24.2.2 - To Choose Smaller Burden 486
24.2.3 - To Choose a Short Blasthole 489
24.2.3.1 - Theoretical Analysis 489
24.2.3.2 - Confirmation From Practical Blasts 490
24.2.4 - To Divide a Single Blast Into Multiple Blasts 490
24.2.4.1 - DSB Method 490
24.2.4.2 - Application in Industry 491
24.2.5 - To Avoid Simultaneous Multihole Initiation at the Beginning of a Blast 492
24.2.6 - To Use Decoupled Charge 493
24.2.7 - To Use Multideck Charge 493
24.2.8 - Other Methods 493
24.3 - To make use of stress wave superposition 493
24.3.1 - Fundamental Principles 493
24.3.2 - Reproducible Waveforms of Single Shots 494
24.3.3 - Applications in Mines 496
24.3.4 - Comments on Wave Superposition Method 496
24.4 - To make ground vibrations damped 496
24.4.1 - Theoretical Background 496
24.4.2 - To Change Initiation Sequence and Reduce Vibrations 498
24.4.3 - Application at Malmberget Mine 500
24.4.4 - Comments 501
24.5 - To prevent stress waves from propagating into inhabited area 501
24.5.1 - Slot 501
24.5.2 - Vibration Barrier 503
24.6 - Concluding remarks 503
24.6.1 - Feasibility of Vibration Reduction 503
24.6.2 - Basic Principles for Vibration Reduction 503
24.6.3 - First Way to Reduce Vibration 503
24.6.4 - Second Way to Reduce Vibration 503
24.6.5 - Third Way to Reduce Vibration 503
24.6.6 - Fourth Way to Reduce Vibration 504
24.6.7 - Two Cheap and Simple Methods for Vibration Reduction 504
24.6.8 - Controlling Vibrations by Combining Different Methods 504
24.7 - Exercises 504
References 504
Chapter 25 - Special Blasting Techniques 506
25.1 - Demolition blasting 506
25.1.1 - Methods for Demolishing a Chimney 506
25.1.2 - Vibration and Safety 507
25.2 - Reinforcing soft ground by blasting 508
25.3 - Shaped charges and applications 508
25.3.1 - Shaped Charges 508
25.3.2 - Applications 510
25.4 - Well stimulation in oil and gas production 510
25.5 - Explosion welding 512
25.6 - STUMP blasting 512
25.7 - Static fragmentation agents 513
References 514
Subject Index 516
Back cover 530

Erscheint lt. Verlag 1.5.2016
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Technik Bauwesen
Technik Maschinenbau
ISBN-10 0-12-802704-5 / 0128027045
ISBN-13 978-0-12-802704-2 / 9780128027042
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 61,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 68,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Aufbau der Erde, Erdgeschichte und Geologie Deutschlands

von Alecia M. Spooner

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
22,99