Handbook of Composites from Renewable Materials, Nanocomposites
Wiley-Scrivener (Verlag)
978-1-119-22381-8 (ISBN)
The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials.
Volume 7 is solely focused on the "Nanocomposites: Science and Fundamentals" of renewable materials. Some of the important topics include but not limited to: Preparation, characterization, and applications of nanomaterials from renewable resources; hydrogels and its nanocomposites from renewable resources: preparation of chitin-based nanocomposite materials through gelation with ionic liquid; starch-based bionanocomposites; biorenewable nanofiber and nanocrystal; investigation of wear characteristics of dental composite reinforced with rice husk-derived nanosilica filler particles; performance of regenerated cellulose/vermiculite nanocomposites fabricated via ionic liquid; preparation, structure, properties, and interactions of the PVA/cellulose composites; green composites with cellulose nanoreinforcements; biomass composites from bamboo-based micro/nanofibers; synthesis and medicinal properties of polycarbonates and resins from renewable sources; nanostructured polymer composites with modified carbon nanotubes; organic–inorganic nanocomposites derived from polysaccharides; natural polymer-based nanocomposites; cellulose whisker-based green polymer composites; poly (lactic acid) nanocomposites reinforced with different additives; nanocrystalline cellulose; halloysite-based bionanocomposites; nanostructurated composites based on biodegradable polymers and silver nanoparticles; starch-based biomaterials and nanocomposites; green nanocomposites based on PLA and natural organic fillers; and chitin and chitosan-based nanocomposites.
Vijay Kumar Thakur is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener. Manju Kumar Thakur has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials. Michael R. Kessler is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
Preface xxi
1 Preparation, Characterization, and Applications of Nanomaterials (Cellulose, Lignin, and Silica) from Renewable (Lignocellulosic) Resources 1
K.G. Satyanarayana, Anupama Rangan, V.S. Prasad and Washington Luiz Esteves Magalhaes
1.1 Introduction 2
1.1.1 Cellulose and Nanocellulose 3
1.1.1.1 Types of Nanocellulose 5
1.1.2 Lignin and Nanolignin 7
1.1.3 Silica and Nanosilica 7
1.2 Preparation of Nanomaterials 10
1.2.1 Nanocellulose from Lignocellulosic Materials 10
1.2.1.1 Mechanical Shearing and Grinding 11
1.2.1.2 Steam Explosion/High-Pressure Homogenization 12
1.2.1.3 Chemical Methods (Acid Hydrolysis, Alkaline Treatment and Bleaching) 16
1.2.1.4 Ultrasonication 17
1.2.1.5 Other Methods 18
1.2.1.6 Functionalized Nanocellulose from Fibers 20
1.2.2 Nanolignin 21
1.2.2.1 Precipitation Method 22
1.2.2.2 Chemical Modification 22
1.2.2.3 Electro Spinning Followed by Surface Modification 22
1.2.2.4 Freeze Drying Followed by Thermal Stabilization and Carbonization 22
1.2.2.5 Supercritical Antisolvent Technology 23
1.2.2.6 Chemomechanical Methods 23
1.2.2.7 Nanolignin by Self-Assembly 23
1.2.2.8 Lignin Nanocontainers by Miniemulsion Method 23
1.2.2.9 Template-Mediated Synthesis 24
1.2.3 Nanosilica 25
1.2.3.1 Nanosilica Obtained from Plants 25
1.2.3.2 Enzymatic Crystallization of Amorphous Nanosilica 27
1.3 Characterization of Nanomaterials 27
1.3.1 Characterization of Nanocellulose 29
1.3.1.1 Structure and Morphology of NC 29
1.3.1.2 Physical Properties (Dimensions, Density, Electrical, Crystallinity, and Any Other) 33
1.3.1.3 Mechanical Properties 36
1.3.2 Characterization of Lignin Nanoparticles 37
1.3.2.1 Morphology of Lignin Nanoparticles 38
1.3.2.2 Thermal Analysis 39
1.3.3 Other Methods 39
1.3.4 Characterization of Nanosilica 39
1.4 Applications and Market Aspects 45
1.4.1 Nanocellulose 45
1.4.1.1 Biomedical Applications 46
1.4.1.2 Dielectric Materials 46
1.4.1.3 In Composite Manufacturing for Various Applications 46
1.4.1.4 Advanced Functional Materials 47
1.4.2 Nanolignin 49
1.4.3 Nanosilica 51
1.4.3.1 In Composites 51
1.4.3.2 Nanosilica in Nacre Composite 52
1.4.3.3 Encapsulation of Living Cells by Nanosilica 52
1.5 Concluding Remarks and Challenges Ahead 54
Acknowledgments 55
References 55
2 Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications 67
B. Manjula, A. Babul Reddy, T. Jayaramudu, E.R. Sadiku, S.J. Owonubi, Oluranti Agboola and Tauhami Mokrani
2.1 Introduction 67
2.2 Hydrogels from Renewable Resources 71
2.3 Hydrogel Technical Features 72
2.4 Nanocomposite Hydrogels 72
2.4.1 Polymer-Clay-Based Nanocomposite Hydrogels 75
2.4.2 Poly(ethylene Oxide)–Silicate Nanocomposite Hydrogels 76
2.4.3 Poly(acryl Amide) and Poly(vinyl Alcohol)–Silicate-Based Nanocomposite Hydrogels 77
2.5 Nanocomposite Hydrogels with Natural Polymers 79
2.6 Classifications of Hydrogels 80
2.7 Applications of Hydrogels as Biomaterials 82
2.7.1 Hydrogels for Drug Delivery Applications 82
2.7.2 Hydrogels for Tissue-Engineering Scaffolds 84
2.7.3 Hydrogels for Contact Lens 85
2.7.4 Hydrogels for Cell Encapsulation 85
2.7.5 Artificial Muscles and Nerve Regeneration 86
2.8 Conclusions 87
Acknowledgment 88
References 88
3 Preparation of Chitin-Based Nanocomposite Materials Through Gelation with Ionic Liquid 97
Kazuya Yamamoto and Jun-ichi Kadokawa
3.1 Introduction 98
3.2 Dissolution and Gelation of Chitin with Ionic Liquid 100
3.3 Fabrication of Self-Assembled Chitin Nanofibers by Regeneration from the Chitin Ion Gels 103
3.4 Preparation of Nanocomposite Materials from Chitin Nanofibers 104
3.5 Conclusion 114
References 115
4 Starch-Based Bionanocomposites 121
Abbas Dadkhah Tehrani, Masoumeh Parsamanesh and Ali Bodaghi
4.1 Introduction 121
4.2 Nanocomposites 122
4.3 Starch Structural Features 123
4.4 Starch-Based Bionanocomposites 124
4.4.1 Starch Silicate Nanocomposites 125
4.4.2 Starch/Chitosan Composites 126
4.4.3 Starch Cellulose Nanocomposites 128
4.4.4 Starch Nanocomposites with Other Nanofillers 129
4.5 Starch Nanocrystal, Nanoparticle, and Nanocolloid Preparation and Modification Methods 131
4.5.1 Starch Nanocrystals Preparation by Acid Hydrolysis Method 131
4.5.2 Starch Nanocrystal Modification Methods 133
4.5.2.1 Starch Nanocrystals Chemical Modification by Molecules with Low Molecular Weight 133
4.5.2.2 Modification of Starch Nanocrystals via Surface Grafting of Polymers 133
4.5.3 Starch Nanoparticle and Nanocolloid Preparation and Modification Methods 135
4.6 Nano Starch as Fillers in Other Nanocomposites 140
4.7 Biomedical Application 143
4.8 Conclusion 144
References 145
5 Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites 155
Linxin Zhong and Xinwen Peng
5.1 Nanocellulose-Based and Nanocellulose-Reinforced Nanocomposite Hydrogels 156
5.1.1 Gelling Performances of Nanocelluloses 157
5.1.2 Nanocelluloses-Reinforced Nanocomposite Hydrogels 159
5.2 Nanocellulose-Based Aerogels 166
5.2.1 Preparation and Properties of Nanocellulose Aerogels 166
5.2.2 Nanocellulose–Polymer Composite Aerogels 171
5.2.3 Nanocellulose–Inorganic Nanocomposite Aerogels 176
5.2.4 Nanocellulose–Nanocarbon Hybrid Aerogels 179
5.3 Nanocellulose-Based Biomimetic and Conductive Nanocomposite Films 183
5.3.1 Nanocellulose–Polymer Biomimetic Nanocomposite Films 183
5.3.2 Nanocellulose–Inorganic Biomimetic Nanocomposite Films 187
5.3.3 Nanocellulose–Nanocarbon Conductive Nanocomposite Films 190
5.4 Chiral Nematic Liquid Crystal and its Nanocomposites with Unique Optical Properties 196
5.4.1 CNC Chiral Nematic Performances 196
5.4.2 CNC–Polymer Photonic Nanocomposites 199
5.4.3 CNC–Inorganic Photonic Nanocomposites 202
5.4.4 CNC-Templated Chiral Nematic Nanomaterials 204
5.5 Spun Fibers from Nanocelluloses 207
5.5.1 Spinning Performances of Nanocelluloses and Properties 207
5.5.2 Nanocellulose–Polymer Spinning Nanocomposite Fibers 210
5.5.3 Nanocellulose–Nanocarbons Spinning Nanocomposite Fibers 212
5.6 Summary and Outlook 213
References 215
6 Investigation of Wear Characteristics of Dental Composite Reinforced with Rice Husk–Derived Nanosilica Filler Particles 227
I.K. Bhat, Amar Patnaik and Shiv Ranjan Kumar
6.1 Introduction 227
6.2 Materials and Method 229
6.2.1 Synthesis of Nanosilica Powder 229
6.2.2 Materials and Fabrication Details 230
6.2.3 Determination of Hardness 230
6.2.4 Determination of Flexural Strength 231
6.2.5 Determination of Wear 231
6.2.6 Field Emission Scanning Electron Microscope 232
6.3 Results and Discussion 232
6.3.1 Effect of Vickers Hardness on the Dental Composite Filled with Silane-Treated Nanosilica 232
6.3.2 Effect of Flexural Strength on the Dental Composite Filled with Silane-Treated Nanosilica 233
6.3.3 Steady-State Condition for Wear Characterization in Food Slurry and Acidic Medium 233
6.3.3.1 Effect of Chewing Load on Volumetric Wear Rate on Dental Composite 233
6.3.3.2 Effect of Profile Speed on Volumetric Wear Rate of Dental Composite 235
6.3.3.3 Effect of Chamber Temperature on Volumetric Wear Rate of Dental Composite 236
6.3.4 Wear Analysis of Experimental Results by Taguchi Method and ANOVA Analysis 237
6.3.4.1 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Food Slurry Using Taguchi and ANOVA 237
6.3.4.2 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Citric Acid Using Taguchi and ANOVA 240
6.3.5 Surface Morphology of Worn Surfaces Under Food Slurry and Citric Acid Condition 241
6.3.6 Confirmation Experiment of Proposed Composites 243
6.4 Conclusions 244
Acknowledgments 245
Nomenclature 245
References 245
7 Performance of Regenerated Cellulose Nanocomposites Fabricated via Ionic Liquid Based on Halloysites and Vermiculite 249
Nurbaiti Abdul Hanid, Mat Uzir Wahit and Qipeng Guo
7.1 Introduction 250
7.1.1 Overview 250
7.1.2 Cellulose Structure and Properties 250
7.1.3 Regenerated Cellulose 251
7.1.4 Conventional Solvent for Cellulose 251
7.1.5 Dissolution of Cellulose in NMMO 252
7.1.6 Cellulose Dissolution in Ionic Liquid 253
7.1.7 Regenerated Cellulose Nanocomposites 255
7.1.8 Halloysites 255
7.1.9 Vermiculite 255
7.2 Experimental 256
7.2.1 Materials 256
7.2.2 Sample Preparation 257
7.2.2.1 The Preparation of Regenerated Cellulose via Ionic Liquid 257
7.2.2.2 Preparation of Regenerated Cellulose Nanocomposites via Ionic Liquids 257
7.2.3 Characterization of the Nanocomposites Films 257
7.3 Results and Discussions 258
7.3.1 XRD Patterns of RC Nanocomposites 258
7.3.2 FTIR Spectra of RC Nanocomposites 259
7.3.3 Mechanical Properties of RC Nanocomposites 261
7.3.4 Morphology Analysis of the RC Nanocomposites 263
7.3.4.1 Transmission Electron Micrographs Images Analysis 263
7.3.4.2 Scanning Electron Microscopy Images Analysis 264
7.3.5 Thermal Stability Analysis of RC Nanocomposites 265
7.3.6 Water Absorption of RC Nanocomposites 267
7.4 Conclusion 268
Acknowledgments 269
References 269
8 Preparation, Structure, Properties, and Interactions of the PVA/Cellulose Composites 275
Bai Huiyu
8.1 PVA and Cellulose 275
8.1.1 Polyvinyl Alcohol 275
8.1.1.1 Molecular Weight and the Degree of Alcoholysis 275
8.1.1.2 The Advantages and Disadvantages of PVA 276
8.1.2 Cellulose 277
8.1.2.1 Structure and Chemistry of Cellulose 277
8.1.2.2 Source of Cellulose 278
8.1.2.3 The Particle Types of Cellulose 278
8.1.2.4 Properties of Cellulose 279
8.1.2.5 Application of Cellulose 280
8.1.3 PVA/Cellulose Composites 280
8.1.3.1 The Properties of PVA/Cellulose Composites 280
8.1.3.2 Application of PVA/Cellulose Composites 281
8.2 The Bulk and Surface Modification of Cellulose Particles 281
8.2.1 The Bulk Modification of Cellulose Particles 281
8.2.1.1 Complex Modification 281
8.2.1.2 Graft Polymerization 282
8.2.2 The Surface Modification of Cellulose 283
8.2.2.1 Chemical Surface Modification 283
8.2.2.2 Physical Surface Modification 284
8.3 The Methods and Technology of Preparation of the PVA/Cellulose Composites 284
8.3.1 Solvent Casting 284
8.3.2 Melt Processing 285
8.3.3 Electrospun Fiber 285
8.3.4 In Situ Production 286
8.4 The Relationship between Structure and Properties of PVA/Cellulose Composites 286
8.4.1 Interpenetrating Polymer Network 286
8.4.2 Hydrogen-Bonding or Bond Network 287
8.4.3 Chemical Cross-Linked Network 287
8.5 The Effect of the Interaction between PVA and Cellulose on Properties of PVA/Cellulose Composites 288
8.5.1 Characterization Methods for the Interaction between PVA and Cellulose 288
8.5.1.1 Raman Spectroscopy 288
8.5.1.2 Differential Scanning Calorimetry 288
8.5.1.3 X-Ray Powder Diffraction 289
8.5.1.4 Fourier Transform Infrared 289
8.5.2 Interaction between PVA and Cellulose 290
8.5.2.1 Molecular Interactions 290
8.5.2.2 Covalent Interactions 290
8.5.2.3 Nucleation of Cellulose 290
8.6 Conclusions and Outlook 291
References 291
9 Green Composites with Cellulose Nanoreinforcements 299
Denis Mihaela Panaitescu, Adriana Nicoleta Frone and Ioana Chiulan
9.1 Introduction 299
9.2 A Short Overview on Nanosized Cellulose 300
9.3 General Aspects on Green Composites with Cellulose Nanoreinforcements 304
9.4 Green Composites from Biopolyamides and Cellulose Nanoreinforcements 305
9.5 Green Composites from Polylactide and Cellulose Nanoreinforcements 309
9.5.1 General Aspects 309
9.5.2 Processing Methods 310
9.5.2.1 Solution Casting 310
9.5.2.2 Melt Processing 311
9.5.2.3 Other Processing Techniques 314
9.5.3 Mechanical, Thermal, and Morphological Properties 314
9.5.4 Applications 318
9.6 Microbial Polyesters Nanocellulose Composites 319
9.6.1 PHAs Biosynthesis 319
9.6.2 General Overview on PHAs–Nanocellulose Composites 321
9.6.3 Processing Strategies for the Preparation of PHAs–Cellulose Nanocomposites 321
9.6.4 Morphological, Thermal, and Mechanical Characteristics of PHAs/Nanocellulose 323
9.6.5 Biodegradability and Biocompatibility 327
9.6.6 Applications 328
9.7 Conclusions 328
Acknowledgment 329
References 329
10 Biomass Composites from Bamboo-Based Micro/Nanofibers 339
Haruo Nishida, Keisaku Yamashiro and Takayuki Tsukegi
10.1 Introduction 339
10.2 Bamboo Microfiber and Microcomposites 340
10.2.1 Bamboo Fibrovascular Bundle Structure 340
10.2.2 Preparation Methods of Short Bamboo Microfiber 341
10.2.3 Preparation of sBμF with Super-Heated Steam 342
10.2.3.1 SHS Treatment 342
10.2.3.2 Characterization Methods of sBμF 342
10.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo 344
10.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo 345
10.2.3.5 Classification of sBμF 348
10.2.4 Preparation of sBμF/Plastic Microcomposites 349
10.2.4.1 Mechanical and Physical Properties of sBμF/Plastic Microcomposites 349
10.2.4.2 Melt Processability of sBμF/Plastic Microcomposites 350
10.2.4.3 Electrical Properties of sBμF/Plastic Microcomposites 350
10.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite 352
10.3.1 Nanofibrillation Technologies of Cellulose 352
10.3.2 Nanofibrillation Technologies of Lignocellulose 352
10.3.3 Reactive Processing for Nanofibrillation 353
10.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation 355
10.3.5 Preparation of BLCNF/Plastic Nanocomposites 355
10.3.6 Properties of BLCNF/Plastic Nanocomposites 356
10.4 Conclusions 357
References 358
11 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources 363
Selvaraj Mohana Roopan, T.V. Surendra and G. Madhumitha
11.1 Introduction 363
11.2 Synthesis 365
11.2.1 Chemical Synthesis of Polycarbonates 365
11.2.2 Synthesis of Polycarbonate from Eugenol 365
11.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione 366
11.2.4 Synthesis of Mesoporous PC–SiO2 367
11.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP) 367
11.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP) 368
11.3 Polycarbonates from Renewable Resources 368
11.3.1 Ethylene from Biomass 368
11.3.2 Synthesis of Dianols via Microwave Degradation 369
11.3.3 Glycerol Carbonates from Recyclable Catalyst 369
11.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses 370
11.3.5 Liquid-Phase Synthesis of Polycarbonate 371
11.4 Medicinal Properties 372
11.4.1 Polycarbonates in Drug Delivery 372
11.4.2 Polycarbonates in Gene Transformation 372
11.4.3 Cytotoxicity Test of Polycarbonates 373
11.4.4 Polycarbonates in Autoimmunity 374
11.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates 375
11.5 Conclusion 376
References 376
12 Nanostructured Polymer Composites with Modified Carbon Nanotubes 381
A.P. Kharitonov, A.G. Tkachev, A.N. Blohin, I.V. Burakova, A.E. Burakov, A.E. Kucherova and A.A. Maksimkin
12.1 Introduction 382
12.1.1 Polymer Materials and Their Application 382
12.1.2 Carbon Nanotubes Application and Their Main Properties 387
12.2 Experimental Methods 390
12.2.1 Investigation of the CNTs Synthesis 390
12.2.2 CNTs Treatment 395
12.2.3 Composites Fabrication 395
12.2.4 Testing Procedures 395
12.3 Results and Discussion 396
12.3.1 FTIR Spectroscopy 396
12.3.2 Influence of Fluorination on the CNTs Specific Surface 396
12.3.3 X-Ray Photoelectron Spectroscopy Study 396
12.3.4 TGA of Virgin and Fluorinated CNTs 397
12.3.5 SEM Data of Composites Fracture 397
12.3.6 TGA and DSC of Composites 401
12.3.7 Mechanical Properties of Composites 402
12.3.7.1 Tensile Strength 402
12.3.7.2 Flexural Strength 403
12.4 Conclusion 403
Acknowledgments 404
References 404
13 Organic–Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities 409
Ana Barros-Timmons, Fabiane Oliveira and José A. Lopes-da-Silva
13.1 Introduction 409
13.2 Constituents 412
13.2.1 Polysaccharides 412
13.2.2 Inorganic Nanofillers 413
13.3 Preparation of Polysaccharide-Derived Nanocomposites 414
13.3.1 Surface Modification 414
13.3.2 Addition of Components 416
13.3.3 In Situ Preparation of Nanoparticles via Precursors 419
13.4 Processing 421
13.4.1 Plasticizers 422
13.4.2 Conventional Processing Methods to Prepare Inorganic–Polysaccharide Nanocomposites 422
13.4.3 Emerging Methods to Prepare Inorganic–Polysaccharide Nanocomposites 424
13.5 Trends and Perspectives 426
Acknowledgments 426
References 427
14 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future 433
Prasanta Baishya, Moon Mandal, Pankaj Gogoi and Tarun K. Maji
14.1 Introduction 433
14.2 Wood Polymer Nanocomposite 435
14.3 Basic Components of Wood Polymer Nanocomposite 436
14.4 Natural Polymer/Raw Material Used in Preparation of WPNC 436
14.4.1 Starch 436
14.4.2 Gluten 437
14.4.3 Chitosan 438
14.4.4 Vegetable Oil 439
14.4.4.1 Chemical Modification of Vegetable Oil 440
14.5 Wood 442
14.6 Cross-Linker 443
14.7 Modification of Natural Polymers 443
14.7.1 Grafting of Starch 443
14.7.2 Modification of Starch by Other Methods 444
14.7.3 Plasticizer 445
14.7.4 Nano-Reinforcing Agents 446
14.7.4.1 Montmorillonite 446
14.7.4.2 Metal Oxide Nanoparticles 447
14.7.4.3 Carbon Nanotubes 448
14.7.4.4 Nanocellulose 448
14.8 Properties of Natural Polymer-Based Composites 449
14.8.1 Mechanical Properties 449
14.8.2 Thermal Properties 450
14.8.3 Water Uptake and Dimensional Stability 450
14.9 Conclusion and Future Prospects 451
References 452
15 Cellulose Whisker-Based Green Polymer Composites 461
Silviya Elanthikkal, Tania Francis, C. Sangeetha and G. Unnikrishnan
15.1 Cellulose: Discovery, Sources, and Microstructure 462
15.1.1 Sources of Cellulose 462
15.1.2 Microstructure of Cellulose 463
15.2 Nanocellulose 466
15.2.1 Acid Hydrolysis 467
15.2.2 Mechanical Processes 470
15.2.3 TEMPO-Mediated Oxidation 471
15.2.4 Steam Explosion Method 472
15.2.5 Enzymatic Hydrolysis 473
15.2.6 Hydrolysis with Gaseous Acid 474
15.2.7 Treatment with Ionic Liquid 474
15.3 Polymer Composites 475
15.3.1 Polymer Composite Fabrication Techniques 476
15.3.1.1 Casting Evaporation Technique 476
15.3.1.2 Extrusion 476
15.3.1.3 Compression Molding 477
15.3.1.4 Injection Molding 478
15.3.2 Cellulose Whisker Composites: Literature-Based Discussion 478
15.3.2.1 Latex-Based Composites 478
15.3.2.2 Polar Polymer-Based Composites 479
15.3.2.3 Nonpolar Polymer-Based Composites 479
15.4 Applications of Cellulose Whisker Composites 483
15.4.1 Packaging 484
15.4.2 Automotive and Toys 484
15.4.3 Electronics 484
15.4.4 Biomedical Applications 485
References 486
16 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives 495
Ravi Babu Valapa, G. Pugazhenthi and Vimal Katiyar
16.1 Introduction 495
16.2 Biopolymers 497
16.2.1 Classification of Biopolymers 497
16.3 PLA Nanocomposites 502
16.3.1 PLA–Clay Nanocomposites 502
16.3.2 PLA–Carbonaceous Nanocomposites 507
16.3.3 PLA-Bio Filler Composites 510
16.3.4 PLA–Silica Nanocomposites 516
16.4 Summary 516
References 516
17 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials 523
Samira Bagheri, Nurhidayatullaili Muhd Julkapli and Negar Mansouri
17.1 Introduction: Natural Based Products 523
17.2 Nanocellulose 524
17.2.1 Nanocellulose: Properties 524
17.2.1.1 Nanocellulose: Mechanical Properties 526
17.2.1.2 Nanocellulose: Physical Properties 526
17.2.1.3 Nanocellulose: Surface Chemistry Properties 529
17.2.2 Nanocellulose: Synthesis Process 529
17.2.2.1 Conventional Acid Hydrolysis Process 529
17.2.3 Nanocellulose: Limitations 530
17.2.3.1 Single Particles Dispersion 530
17.2.3.2 Barrier Properties 530
17.2.3.3 Permeability Properties 531
17.3 Nanocellulose: Chemical Functionalization 531
17.3.1 Organic Compounds Functionalization 532
17.3.1.1 Molecular Functionalization 532
17.3.1.2 Macromolecular Functionalization 536
17.3.2 Nanocellulose: Inorganic Compounds Functionalization 539
17.3.2.1 Nanocellulose-Titanium Oxide Functionalization 539
17.3.2.2 Nanocellulose-Fluorine Functionalization 539
17.3.2.3 Nanocellulose-Gold Functionalization 540
17.3.2.4 Nanocellulose-Silver Functionalization 540
17.3.2.5 Nanocellulose-Pd Functionalization 540
17.3.2.6 Nanocellulose-CdS Functionalization 541
17.4 Applications of Functionalized Nanocellulose 541
17.4.1 Wastewater Treatment 541
17.4.2 Biomedical Applications 542
17.4.3 Biosensor and Bioimaging 542
17.4.4 Catalysis 543
17.5 Conclusion 543
Acknowledgment 544
References 544
18 Halloysite-Based Bionanocomposites 557
Giuseppe Lazzara, Marina Massaro, Stefana Milioto and Serena Riela
18.1 Introduction 557
18.2 Biodegradable Polymers 559
18.2.1 Cellulose 559
18.2.2 Chitosan 560
18.2.3 Starch 561
18.2.4 Alginate 562
18.2.5 Pectin 562
18.3 Natural Inorganic Filler: Halloysite Nanotubes 563
18.3.1 Functionalization of HNTs 565
18.3.1.1 Functionalization of External Surface 565
18.3.1.2 Functionalization of the Lumen 567
18.3.2 Composites Structured with Halloysite 568
18.4 Bionanocomposites 569
18.4.1 HNT-Biopolymer Nanocomposite Formation 569
18.4.2 Properties of HNTs-Biopolymer Nanocomposites 570
18.4.2.1 Bionanocomposites Surface Morphology 571
18.4.2.2 Bionanocomposites Mechanical and Thermal Response 573
18.5 Applications of HNT/Polysaccharide Nanocomposites 576
18.6 Conclusions 578
References 579
19 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles 585
Oana Fufă, George Mihail Vlăsceanu, Georgiana Dolete, Daniela Cabuzu, Rebecca Alexandra Puiu, Andreea Cîrjă, Bogdan Nicoară and Alexandru Mihai Grumezescu
19.1 Introduction 585
19.2 Silver Nanoparticles 586
19.3 Applications of Silver Nanoparticles 588
19.4 Silver Nanoparticle Composites 594
19.4.1 In situ and ex situ Strategies for AgNPs-Based Composites with Polymer Matrix 594
19.4.2 Other AgNPs Composites 599
19.5 Applications of Silver Nanoparticles Composites 600
19.5.1 Active Substance Delivery Composites 600
19.5.2 Antimicrobial Composites 603
19.6 Conclusions and Future Prospectives 607
Acknowledgments 608
References 608
20 Starch-Based Biomaterials and Nanocomposites 623
Arantzazu Valdés and María Carmen Garrigós
20.1 Introduction 623
20.2 Starch: Structure and Characteristics 625
20.3 Applicability of Starch in Food Industry 627
20.3.1 Starch Biomaterials: Films, Coatings, and Blends 629
20.3.2 Reinforced Materials 631
20.3.3 Starch Nanoparticles 632
20.4 Conclusion 632
References 633
21 Green Nanocomposites-Based on PLA and Natural Organic Fillers 637
Roberto Scaffaro, Luigi Botta, Francesco Lopresti, Andrea Maio and Fiorenza Sutera
21.1 Introduction 637
21.2 Poly(lactic acid) (PLA) 638
21.3 Natural Organic Nanofillers 640
21.3.1 Cellulose 641
21.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA 643
21.3.2 Chitin 645
21.3.3 Starch 646
21.4 Bionanocomposites Based on PLA 648
21.4.1 PLA/cellulose Nanocomposites 648
21.4.1.1 Preparation 648
21.4.1.2 Properties 651
21.4.1.3 Degradation 653
21.4.2 PLA/chitin Nanocomposites 654
21.4.2.1 Preparation 654
21.4.2.2 Properties 655
21.4.3 PLA/starch Nanocomposites 656
21.4.3.1 Preparation 656
21.4.3.2 Properties 657
21.5 Conclusions 659
References 659
22 Chitin and Chitosan-Based (NANO) Composites 671
André R. Fajardo, Antonio G. B. Pereira, Alessandro F. Martins, Alexandre T. Paulino, Edvani C. Muniz and You-Lo Hsieh
22.1 Introduction 672
22.1.1 Chitin 672
22.1.2 Chitosan 673
22.2 Chitin and Chitosan Properties and Processing 674
22.3 Preparation and Characterization of Ct and Cs Composites: An Overview 675
22.4 Ct- and Cs-Metal Composites 679
22.5 Ct and Cs-Inorganic Composites 685
22.5.1 Food Packaging 685
22.5.2 Membranes 685
22.5.3 Biomedical Uses 685
22.5.4 Environmental Remediation 686
22.6 Composites Based on Ct and Cs Whiskers 687
22.7 Overview, Perspectives, and Conclusion 690
References 691
Index 701
Erscheinungsdatum | 18.05.2017 |
---|---|
Reihe/Serie | Handbook of Composites from Renewable Materials |
Sprache | englisch |
Maße | 170 x 257 mm |
Gewicht | 1406 g |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik ► Maschinenbau | |
ISBN-10 | 1-119-22381-4 / 1119223814 |
ISBN-13 | 978-1-119-22381-8 / 9781119223818 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich