Micro/Nano Integrated Fabrication Technology and Its Applications in Microenergy Harvesting (eBook)

eBook Download: PDF
2015 | 1st ed. 2016
XX, 122 Seiten
Springer Berlin (Verlag)
978-3-662-48816-4 (ISBN)

Lese- und Medienproben

Micro/Nano Integrated Fabrication Technology and Its Applications in Microenergy Harvesting - Xiao-Sheng Zhang
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a universal mass-production micro/nano integrated fabrication technology, which can be used to realize micro/nano hierarchical structures on Si-based materials and flexible polymeric materials. This fabrication technology has been systematically investigated by using experimental measurements, mechanism analyses, theoretical simulations and so on. Three common materials (i.e., silicon, PDMS and Parylene-C) with micro/nano hierarchical structures have been successfully fabricated, which also show several attractive properties. Furthermore, this book introduces this fabrication technology into microenergy field, and proposes several high-performance nanogenerators, of which practical applications have also been studied in commercial electronic device and biomedical microsystem.

Dr. Zhang Xiao-Sheng is currently working as a postdoctoral researcher at École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland, and as a visiting researcher at the University of Tokyo. His research interests mainly include three areas:
(1) micro/nano integrated fabrication technology;
(2) micro/nano energy technology;
(3) smart drug delivery system.
HONORS & AWARDS
• 2014 Excellent Doctoral Dissertation of Peking University
• 2014 Outstanding Graduation Student of Peking University
• 2014 Outstanding Graduation Student of Beijing City
• 2013 National Scholarship for Outstanding Graduate Students
• 2013 Academic Top 10 Graduate Student, Peking University
• 2013 Innovation Award, Peking University
• 2013 Academic Top 10 Graduate Student, School of Electronics Engineering and Computer Science, Peking University
• 2013 Best Paper Award, The 11th Annual National Academic Conference for Ph.D. Candidates
• 2012 Lu Jiaxi Outstanding Graduate Student Award, Lu Jiaxi Education Foundation (award 20 students nationwide each year)
• 2012 Tokyo Electron Limited (TEL) Scholarship, Peking University
• 2012 Founder Scholarship, Peking University
• 2011 Merit Student Award, Peking University
• 2011 Best Poster Award, 4th Intl. Conf. on Nanosci. & Tech. (ChinaNano2011), Beijing
• 2011 Best Group Award, Platinum Level, 4th Asia Nanotech Camp 2011 (ANC2011), Korea
• 2011 Best Poster Award, Silver Level, 4th Asia Nanotech Camp 2011 (ANC2011), Korea
• 2011 Best Oral Presentation, 2011 Beijing Microelectronics Forum for Ph.D. Students
• 2010 Outstanding Graduate Student Leader Award, University of Electronic Science and Technology of China
• 2003-2007 Outstanding Student Scholarship for three consecutive years & Outstanding Student Leader Award, University of Electronic Science and Technology of China
JOURNAL PUBLICATIONS
1. Xiao-Sheng Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, H. X. Zhang. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Letters, 2013, 13, 1168-1172.
2. Xiao-Sheng Zhang, F. Y. Zhu, M. D. Han, X. M. Sun, X. H. Peng, H. X. Zhang. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures. Langmuir, 2013, 29, 10769-10775.
3. Xiao-Sheng Zhang, M. D. Han, B. Meng, H. X. Zhang. High Performance Triboelectric Nanogenerators Based on Large-Scale Mass-Production Fabrication Technologies. Nano Energy, 2015, 11, 304-322.(Review Article)
4. Xiao-Sheng Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang. High-Performance Triboelectric Nanogenerator with Enhanced Energy Density Based on Single-Step Fluorocarbon Plasma Treatment. Nano Energy, 2014, 4, 123-131.
5. H. Zhang*, Xiao-Sheng Zhang*, X. Cheng*, Y. Liu, M. Han, X. Xue, S. Wang, F. Yang, A.S. Smitha, H. Zhang, Z. Xu. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: In vitro and in vivo studies. Nano Energy, 2015, 12, 296-304. (*Co-First Author)
6. M.D. Han*, Xiao-Sheng Zhang*, B. Meng, W. Liu, W. Tang, X. M. Sun, H. X. Zhang. r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano, 2013, 7, 8554-8560. (*Co-First Author)
7. Nicolas J. Peter*, Xiao-Sheng Zhang*, S. G. Chu, F. Y. Zhu, H. Seidel, H. X. Zhang. Tunable wetting behavior of nanostructured poly(dimethylsiloxane) by plasma combination treatments. Applied Physics Letters, 2012, 101, 221601. (*Co-First Author)
8. Xiao-Sheng Zhang, B. Meng, F.Y. Zhu, W. Tang, H.X. Zhang. Switchable Wetting & Flexible SiC Thin Film with Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Sensors. Sensors and Actuators A: Physical, 2014, 208, 166-173.
9. Xiao-Sheng Zhang, Z.M. Su, M.D. Han, B. Meng, F.Y. Zhu, H.X. Zhang. Fabrication and characterization of the functional parylene-C film with micro/nano hierarchical structures. Microelectronic Engineering, 2015, DOI: 10.1016/j.mee.2015.01.038.
10. Xiao-Sheng Zhang, Q. L. Di, F. Y. Zhu, G. Y. Sun, H. X. Zhang. Superhydrophobic micro/nano dual-scale structures. Journal of Nanoscience and Nanotechnology, 2013, 13, 1539-1542.
11. Xiao-Sheng Zhang, F. Y. Zhu, G. Y. Sun, H. X. Zhang. Fabrication and characterization of squama-shape micro/nano multi-scale silicon material. Science in China Series E, 2012, 55, 3395-3400.
12. Xiao-Sheng Zhang, Q. L. Di, F. Y. Zhu, G. Y. Sun, H. X. Zhang. Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical Properties. Micro & Nano Letters, 2011, 6, 947-950.

Dr. Zhang Xiao-Sheng is currently working as a postdoctoral researcher at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, and as a visiting researcher at the University of Tokyo. His research interests mainly include three areas: (1) micro/nano integrated fabrication technology; (2) micro/nano energy technology; (3) smart drug delivery system. HONORS & AWARDS • 2014 Excellent Doctoral Dissertation of Peking University • 2014 Outstanding Graduation Student of Peking University • 2014 Outstanding Graduation Student of Beijing City • 2013 National Scholarship for Outstanding Graduate Students • 2013 Academic Top 10 Graduate Student, Peking University • 2013 Innovation Award, Peking University • 2013 Academic Top 10 Graduate Student, School of Electronics Engineering and Computer Science, Peking University • 2013 Best Paper Award, The 11th Annual National Academic Conference for Ph.D. Candidates • 2012 Lu Jiaxi Outstanding Graduate Student Award, Lu Jiaxi Education Foundation (award 20 students nationwide each year) • 2012 Tokyo Electron Limited (TEL) Scholarship, Peking University • 2012 Founder Scholarship, Peking University • 2011 Merit Student Award, Peking University • 2011 Best Poster Award, 4th Intl. Conf. on Nanosci. & Tech. (ChinaNano2011), Beijing • 2011 Best Group Award, Platinum Level, 4th Asia Nanotech Camp 2011 (ANC2011), Korea • 2011 Best Poster Award, Silver Level, 4th Asia Nanotech Camp 2011 (ANC2011), Korea • 2011 Best Oral Presentation, 2011 Beijing Microelectronics Forum for Ph.D. Students • 2010 Outstanding Graduate Student Leader Award, University of Electronic Science and Technology of China • 2003-2007 Outstanding Student Scholarship for three consecutive years & Outstanding Student Leader Award, University of Electronic Science and Technology of China JOURNAL PUBLICATIONS 1. Xiao-Sheng Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, H. X. Zhang. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Letters, 2013, 13, 1168-1172. 2. Xiao-Sheng Zhang, F. Y. Zhu, M. D. Han, X. M. Sun, X. H. Peng, H. X. Zhang. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures. Langmuir, 2013, 29, 10769-10775. 3. Xiao-Sheng Zhang, M. D. Han, B. Meng, H. X. Zhang. High Performance Triboelectric Nanogenerators Based on Large-Scale Mass-Production Fabrication Technologies. Nano Energy, 2015, 11, 304-322.(Review Article) 4. Xiao-Sheng Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang. High-Performance Triboelectric Nanogenerator with Enhanced Energy Density Based on Single-Step Fluorocarbon Plasma Treatment. Nano Energy, 2014, 4, 123-131. 5. H. Zhang*, Xiao-Sheng Zhang*, X. Cheng*, Y. Liu, M. Han, X. Xue, S. Wang, F. Yang, A.S. Smitha, H. Zhang, Z. Xu. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: In vitro and in vivo studies. Nano Energy, 2015, 12, 296-304. (*Co-First Author) 6. M.D. Han*, Xiao-Sheng Zhang*, B. Meng, W. Liu, W. Tang, X. M. Sun, H. X. Zhang. r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano, 2013, 7, 8554-8560. (*Co-First Author) 7. Nicolas J. Peter*, Xiao-Sheng Zhang*, S. G. Chu, F. Y. Zhu, H. Seidel, H. X. Zhang. Tunable wetting behavior of nanostructured poly(dimethylsiloxane) by plasma combination treatments. Applied Physics Letters, 2012, 101, 221601. (*Co-First Author) 8. Xiao-Sheng Zhang, B. Meng, F.Y. Zhu, W. Tang, H.X. Zhang. Switchable Wetting & Flexible SiC Thin Film with Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Sensors. Sensors and Actuators A: Physical, 2014, 208, 166-173. 9. Xiao-Sheng Zhang, Z.M. Su, M.D. Han, B. Meng, F.Y. Zhu, H.X. Zhang. Fabrication and characterization of the functional parylene-C film with micro/nano hierarchical structures. Microelectronic Engineering, 2015, DOI: 10.1016/j.mee.2015.01.038. 10. Xiao-Sheng Zhang, Q. L. Di, F. Y. Zhu, G. Y. Sun, H. X. Zhang. Superhydrophobic micro/nano dual-scale structures. Journal of Nanoscience and Nanotechnology, 2013, 13, 1539-1542. 11. Xiao-Sheng Zhang, F. Y. Zhu, G. Y. Sun, H. X. Zhang. Fabrication and characterization of squama-shape micro/nano multi-scale silicon material. Science in China Series E, 2012, 55, 3395-3400. 12. Xiao-Sheng Zhang, Q. L. Di, F. Y. Zhu, G. Y. Sun, H. X. Zhang. Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical Properties. Micro & Nano Letters, 2011, 6, 947-950.

Supervisor’s Foreword 8
Abstract 10
Acknowledgments 13
Contents 15
Abbreviations 18
1 Introduction 20
Abstract 20
1.1 Micro-Nanohierarchical Structures in Nature 21
1.2 Artificial Micro-Nanohierarchical Structures 22
1.2.1 The Progress of Bottom-Up Method 22
1.2.2 The Progress of Top-Down Method 25
1.3 The Development Progress of Microenergy Field 29
1.3.1 Microenergy Technology 29
1.3.2 Nanogenerator 31
1.3.3 Triboelectric Nanogenerator 32
1.4 Research Purpose and Content 34
1.4.1 Research Purpose 34
1.4.2 Research Content 35
References 37
2 Micro-Nanointegrated Fabrication Technique for Silicon 41
Abstract 41
2.1 Nanoforest Fabrication Based on an Improved DRIE Process 41
2.1.1 Deep Reactive-Ion Etching (DRIE) Process 41
2.1.2 Nanostructuring by an Improved DRIE Process 44
2.1.3 Mechanism of Controllable Formation of Nanostructures 45
2.2 Fabrication of Si-based Micro-Nanohierarchical Structures 48
2.2.1 Structural Design 48
2.2.2 Fabrication Process 49
2.2.3 Characterization and Analysis of Micro-NanoHierarchical Structures 51
2.3 Interaction of Multiscale Structures Based on Silicon 53
2.4 Properties of Si-Based Micro-NanoHierarchical Structures 56
2.4.1 Anti-reflective Property 57
2.4.2 Super-hydrophobic Property 59
2.5 Conclusions 64
References 65
3 Micro-Nanointegrated Fabrication Technique for Flexible Materials 66
Abstract 66
3.1 Replication Process and Surface-Energy Control 67
3.1.1 Replication Process Based on Silicon Mold 67
3.1.2 Controllable Fabrication of Ultra-Low-Surface-Energy Silicon Mold 68
3.2 Micro-Nanohierarchical Structures Based on PDMS 69
3.2.1 Brief Introduction of PDMS 69
3.2.2 Single-Step Fabrication of Micro-Nanohierarchical Structures on PDMS 71
3.2.3 Key Factors of Single-Step Replication Process 73
3.2.4 Effect of Process Parameters on Surface Properties of PDMS 74
3.3 Micro-Nanohierarchical Structures Based on Parylene-C 78
3.3.1 Fabrication and Method 79
3.3.2 The Properties of Fabricated MNHS Parylene-C Films 82
3.4 The Interaction of Multiscale Structures on Flexible Materials 84
3.5 The Surface Modification Based on Post-DRIE Process 86
3.5.1 Fluorocarbon Plasma Treatment Based on Post-DRIE Process 86
3.5.2 The Mechanism of Enhancing Hydrophobicity by Using Post-DRIE Process 87
3.6 Conclusions 89
References 90
4 Flexible Triboelectric Nanogenerators: Principle and Fabrication 92
Abstract 92
4.1 Working Principle of TENG 93
4.2 Design of Flexible Sandwich-Shaped TENG 97
4.2.1 Structural Geometry and Surface Profile 97
4.2.2 Theoretical Analysis 98
4.2.3 Finite Element Simulation 100
4.3 Fabrication of the Sandwich-Shaped TENG 101
4.4 Electric Properties Test and Analysis of the Sandwich-Shaped TENG 102
4.4.1 Test System and Brief Results 102
4.4.2 Frequency Effect of External Force on TENG 104
4.4.3 Structural Effect on TENG 106
4.4.4 Powering Ability for Practical Applications 107
4.5 Conclusions 107
References 108
5 Flexible Triboelectric Nanogenerators: Enhancement and Applications 109
Abstract 109
5.1 Enhancement of TENG Based on Single-Step Fluorocarbon Plasma Treatment 109
5.1.1 Structural Design and Fabrication 110
5.1.2 Triboelectric Mechanism Analysis Based on DFT Calculations 111
5.1.3 Effect of Fluorocarbon Plasma Treatment on Output Performance of TENG 114
5.1.4 Reliability of Fluorocarbon Plasma Treatment for Enhancing TENG 115
5.1.5 The Performance Enhancement Analysis 117
5.2 Enhancement of TENG Based on Hierarchical Structures 119
5.2.1 Enhancement of TENG Based on Micro-Nanohierarchical Structures 119
5.2.2 Enhancement of TENG Based on Hybrid Mechanisms 121
5.3 Applications of TENG for Biomedical Microsystems 124
5.3.1 Application of TENG for Driving Neural Prosthesis In Vitro 124
5.3.2 Application of TENG for Driving Neural Prosthesis In Vivo 126
5.4 Applications of TENG in the Other Fields 129
5.4.1 Self-Powered Humidity Monitoring Sensor 129
5.4.2 Application for Portable Electronics 130
5.5 Conclusions 131
References 132
6 Summary and Perspectives 134
6.1 Summary 134
6.2 Main Contribution 135
6.3 Perspectives 136
Reference 137

Erscheint lt. Verlag 1.12.2015
Reihe/Serie Springer Theses
Zusatzinfo XX, 122 p. 95 illus., 76 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Flexible Material • Improved DRIE Process • Microenergy Source • Micro/Nano Hierarchical Structures • Micro/Nano Integrated Fabrication • Nanogenerator • Silicon • Soft Lithography
ISBN-10 3-662-48816-7 / 3662488167
ISBN-13 978-3-662-48816-4 / 9783662488164
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99